
PHIL 210/510: Formal Methods Yale, Spring 2025
Lecture 1: Sets, Relations, and Functions Dr. Calum McNamara

1. Sets

Set theory is the foundation of mathematics—and also a useful field of study
for philosophers. It’s basic concept is that of a set. Roughly speaking, a set is
a collection of objects.¹ For our purposes, it doesn’t matter what these objects
are. They could be numbers, people, countries, etc.

To illustrate, take three objects—say, Mishka (my cat), the number 3, and Ice-
land (the country). We can collect these things into a set. We can also denote
this set by writing names for its objects, and enclosing them in curly braces:

{Mishka, 3, Iceland}.

We call the objects in this set its elements or members.

Alternatively, consider the set consisting of all the people currently living in
Japan. We can write this set as follows:

{x : x is a person currently living in Japan}.

Read this as: ‘The set of all x such that x is a person currently living in Japan’.
Here, we pick out the set by specifying some property shared by all its mem-
bers. (This is called the intensive way specifying a set; the other way we
looked at is called the extensive way.)

Challenge Question. For any property we can think of, can we form a set
whose members have that property? Why or why not?

If A is a set, and x is an element of that set, then we write ‘x ∈ A’ to say that
x is an element of A. Here, ‘∈’ is the symbol for set membership.

1. This definition is informal—and indeed, the notion of a set in mathematics is often
taken as a kind of undefined primitive.

Sets are defined by their members. We call this the axiom of extensionality.
To see what this means, consider this set:

{Mishka, Mishka, Mishka}.

How many members does this set have? The answer is 1 (not 3). Writing the
name for an object in the set multiple times doesn’t change how many things
are in that set. (This idea turns out to be surprisingly important.)

2. Unions, Intersections, and Relative complements

Consider two sets. First: {1, 3, 5}. And second: {1, 2, 3, 4}. The union of these
sets is the set: {1, 2, 3, 4, 5}. More generally, if A and B are sets, then their
union is—written ‘A ∪ B’—is the set:

A ∪ B = {x : x is an element of A or x is an element of B}.

(Note that, just as in logic, we take ‘or’ to be inclusive.) Conversely, the inter-
section of the two sets above is the set: {1, 3}. More generally, the intersec-
tion of two sets A and B—written ‘A ∩ B’—is:

A ∩ B = {x : x is an element of A and x is an element of B}.

Finally, the relative complement of {1, 3, 5} in the set {1, 2, 3, 4} is the set
{2, 4}. More generally, the relative complement of A in B—written ‘B \A’—is
the set:

B \A = {x ∈ B : x /∈ A}.

(‘/∈’ is just our symbol for “non-membership”.) This is also sometimes called
the set difference of B and A. Note that it’s not possible to have the comple-
ment of a set simpliciter—complementation is always “relative” to a given set.
We’ll see why that is in a couple of lectures’ time.

3. Subsets and the Empty Set
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Consider the set consisting of all natural numbers, 0, 1, 2, 3,… This set is so
important that we usually denote using a special symbol, ‘N’:

N = {0, 1, 2, 3, ...}.

Consider also the set of even natural numbers:

E = {0, 2, 4, 6, ...}.

Clearly, every element in E is also an element of N. Thus, we say that E is a
subset of N.

More generally: a set A is a subset of another set B just in case every element
in A is also an element in B. We write this as follows: ‘A ⊆ B’. (Two sets are
equal just in case each is a subset of the other.)

Note that every set is a subset of itself. (After all, look at the definition for ‘sub-
set’ we just gave!) When B contains some elements that A does not, however,
then we say that A is a proper subset of B, and we write this ‘A ⊂ B’.

Note also that there’s a special set, called the empty set, denoted ∅, that’s a
subset of every set. The empty set ∅ has no members at all.²

Challenge Question. Why is the empty set a subset of every set? (Hint: use
the definition of ‘subset’.)

4. Power sets

Consider the set A = {1, 2, 3}. How many subsets does it have? The answer
is: 8: ∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}.

If we collect all the subsets of A into a single set, we get a set called the power
set of A. We denote this set Pow(A) (although different notations are some-
times used).

ChallengeQuestion. If a set A has n members (where n is a natural number),
can you say how many members the power set of A has?

2. It’s permissible to write the empty set as ‘{}’.

5. Relations

Consider again the sets {1, 3, 5} and {1, 2, 3, 4}. The Cartesian product of
these sets is the set of all ordered pairs, ⟨x, y⟩, whose first member is an
element of the first set, and whose second element is an element of the second.

More generally, if A and B are sets, then the Cartesian product of A and B,
written ‘A × B’, is the set:

{⟨x, y⟩ : x ∈ A and y ∈ B}.

(We can generalize this definition to include three sets, four sets, etc. But we’ll
focus mostly on just two sets, for present purposes.)

A binary relation is a subset of the Cartesian product of two sets.³ (Likewise,
a ternary relation is a Cartesian product of three sets, etc.)

To illustrate the notion of a binary relation, let A be the set of all living people.
Then A × A is the set of all pairs of living people. One kind of binary relation
might then be:

R = {⟨x, y⟩ : x is a sibling of y}.

Clearly, R is a subset of A × A. Note that we often use the notation ‘xRy’ or
‘Rxy’ to say that ‘x stands in the relation R to y’. (Relations will come up a lot
when we study modal logic.)

6. Functions

A function is a special kind of relation. It’s a relation R such that, for every
x, there’s exactly one y such that x stands in the relation R to y.

To illustrate: consider the familiar function f (x) = x2, where x is a natural
number. This can be thought of as a set of pairs: {⟨1, 1⟩, ⟨2, 4⟩, ...}.

We’ll say a bit more about functions next time.

3. In this class, if I use the word ‘relation’ on its own, I’ll almost always mean ‘binary
relation’.
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PHIL 210/510: Formal Methods Yale, Spring 2025
Lecture 2: Left-overs; Logic Dr. Calum McNamara

1. More on Sets—and Venn Diagrams

Last time, we talked (a bit quickly!) about set theory. Among other things,
we talked about the algebra of sets—things like unions, intersections, and
relative complements.

Remember the definitions:

• The union of A and B is the set: {x : x ∈ A or x ∈ B}.

• The intersection of A and B is the set: {x : x ∈ A and x ∈ B}.

• The relative complement of A in B is the set: {x ∈ B : x /∈ A}.

(One thing I forgot to say: we often use the notation ‘A ∪ B’ for the union of
A and B; ‘A ∩ B’ for the intersection of A and B; and ‘B \A’ (or sometimes
‘B − A’ or even ‘Ac ∈ B’) for the relative complement of A in B. I corrected
this on the previous handout.)

It’s surprisingly easy to visualize these concepts using Venn diagrams. For
example, here’s one way you can visualize sets A, B, and their intersection:

A B

A ∩ B

Figure1: Set intersection

ChallengeQuestion. How would you alter this Venn diagram, so as to visu-
alize the union of A and B, and the relative complement of A in B?

2. Relations and Functions

Consider the sets {1, 3, 5} and {1, 2, 3, 4}. The Cartesian product of these
sets is the set of all ordered pairs, ⟨x, y⟩, whose first member is an element
of the first set, and whose second element is an element of the second—e.g.,
⟨1, 1⟩, ⟨1, 2⟩, etc.

More generally, if A and B are sets, then the Cartesian product of A and B,
written ‘A × B’, is the set:

{⟨x, y⟩ : x ∈ A and y ∈ B}.

(We can generalize this definition to include three sets, four sets, etc. But we’ll
focus mostly on just two sets, for present purposes.)

A binary relation is a subset of the Cartesian product of two sets.¹ (Likewise,
a ternary relation is a subset of the Cartesian product of three sets, etc.)

To illustrate the notion of a binary relation, let A be the set of all living people.
Then A × A is the set of all pairs of living people. One kind of binary relation
might then be:

R = {⟨x, y⟩ : x is a sibling of y}.

Clearly, R is a subset of A × A. Note that we often use the notation ‘xRy’ or
‘Rxy’ to say that ‘x stands in the relation R to y’. (Relations will come up a lot
when we study modal logic.)

A function is a special kind of relation. It’s a relation R such that, for every
x, there’s exactly one y such that x stands in the relation R to y.

To illustrate: consider the familiar function f (x) = x2, where x is a natural
number. This can be thought of as a set of pairs: {⟨1, 1⟩, ⟨2, 4⟩, ...}.

Let R be a relation (or a function—it doesn’t matter). The domain of R, writ-
ten ‘dom(R)’ is the set: {x : there exists a y such that xRy}. Meanwhile, the
range of R, ‘ran(R)’, is the set: {y : there exists a x such that xRy}.

1. In this class, if I use the word ‘relation’ on its own, I’ll almost always mean ‘binary
relation’.
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3. Propositional Logic—from 50k Feet

If you took Phil 115 with me, you probably got sick of me saying: ‘Logic is the
study of arguments’.² That’s still true; but we’re now going to think of logic
a bit more abstractly. In particular, we’re going to think about propositional
logic as a formal system.

A formal system has two components: (i) a formal language and (ii) a deduc-
tive system. The tree below is a graphical representation of that situation for
propositional logic:

The Formal System of Propositional Logic

Formal Language

Symbols

Connectives
Propositional Atoms

Parentheses

Formation Rules

E.g., if ϕ is a formula,
so is ¬ϕ.

Deductive System

Axioms

∅ (standardly)

Rules of Inference

E.g., modus ponens

In propositional logic, the formal language is (often) comprised of the follow-
ing symbols:

• Parentheses: (, ),

• Negation symbol: ¬,

• Conjunction symbol: ∧,

• Disjunction symbol: ∨,

2. I’m really hoping everyone in this class has some familiarity with logic, at least to
the level of a course like Yale’s Phil 115. If you don’t, please speak to me—I can help
you fill in the background.

• Material conditional symbol: ⊃,³

• Proposition atoms: p1, p2, ...; sometimes p, q, r, ....

Then, we have formation rules for putting these symbols together, to form
legitimate formulas of the language:

(i) Every propositional atom, p1, p2, ... (or p, q,…) is a formula.

(ii) If ϕ is formula, then so is ¬ϕ.⁴

(iii) If ϕ and ψ are formulas, then so is (ϕ ∧ ψ), (ϕ ∨ ψ), and (ϕ ⊃ ψ).

(iv) Nothing else is a formula.

Meanwhile, the deductive system for propostional logic tells how, if we start
with some formulas, we can derive other formulas, using some rules—so-
called rules of inference. One way we can do this is to start with a very
large stock of rules of inference. If you’ve learned natural deduction before,
this is how you would’ve done things.

A different way we can specify the deductive system, however, is to start with
a small stock of formulas, whose truth we take for granted. These are called
axioms. For example, in propositional logic, one famous set of axioms is the
following (due to Jan Łukasiewicz):⁵

• (ϕ ⊃ (ψ ⊃ ϕ)),

• (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ)),

• ((¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ)).

We then take the following rule as our only rule of inference:

• Modus Ponens. Given φ and (φ ⊃ ψ), infer ψ.

3. In previous courses, you may have used the symbol ‘→’ for the material condi-
tional. In these notes, however, we reserve ‘→’ for the indicative conditional symbol
(see chapter 4), and stick with ‘⊃’ for the material conditional.
4. Hang on! What the heck is ‘ϕ’ here?Think of it as a placeholder, which could stand
for any formula. It’s sort of analogous to how a variable, x, can stand for a number.
5. Strictly speaking, Łukasiewicz’s axioms are all axiom schemas. We get legitimate
axioms, when we replace the ϕ’s and ψ’s with formulas of propositional logic.
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We call any formula in a deductive system, which we can derive from the
axioms, using the rules, a theorem of the system.

4. A Toy Formal System

One of the best ways to get a feel for how formal systems—like the one we
just constructed—work is by playing with them.

With that in mind, then, let’s play a game with a toy formal system, from
Douglas Hofstadter’s famous book Gödel, Escher, Bach (1979): the so-called
MIU system.

The formal language of the MIU system consists of “strings” of the following
symbols: ‘M’, ‘I’, ‘U’. We also have a single axiom: Ml. The theorems of the
system are then strings we can “build” using these rules:

(1) If you have a string whose last letter is ‘I’, then you can add a ‘U’ at the
end.

(2) Suppose you have a string Mϕ (where ϕ is any string). Then you can write
Mϕϕ (where ϕ again is a string).

(3) If you have three ‘I’s in a row in your string, i.e., your string contains ‘III’,
then you can replace ‘III’ with ‘U’.

(4) If ‘UU’ occurs inside your string, you can delete it.

ChallengeQuestions.

• Given the axiom MI, show that you can write ‘MIU’.

• Now that we have MIU, show that we can write ‘MIUIU’.

• Imagine that we have a string UMIIIMU. Show that we can write
‘UMUMU’.

• Suppose we have the string MUU. Show that we can simply write ‘M’.

Like I said, it’s fun to play around with this system, and see what well-formed
strings you can legitimately arrive at. (These are the theorems.) (For example,
in illustrating rules 3 and 4, I assumed that we had the strings UMIIIMU and

MUU. But are those theorems that we can arrive at given the axiom MI and
the rules 1-4 in the first place? The answer isn’t obvious.)

If you’re really keen, try the following exercise: try “to make [the string] MU.
Don’t worry if you don’t get it. Just try it out a bit—the main thing is for you
to get the flavor of this MU-puzzle. Have fun” (Hofstadter, 2000, p. 35).⁶

5. Back to Propositional Logic

Now what we want to do is some of the same thing in propositional logic. In
this case (again), we have the following three axiom schemas:

• (ϕ ⊃ (ψ ⊃ ϕ)),

• (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ)),

• ((¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ)).

And we have the following rule of inference:

• Modus Ponens. Given φ and (φ ⊃ ψ), infer ψ.

Challenge Question. Can you derive the formula ((p ⊃ q) ⊃ (p ⊃ p))
from the axioms? How about (p ⊃ p)?

6. The Epistemology of Logic

Since this is a philosophy course, let’s do some philosophy. Recall that our
one rule of inference in propositional logic is modus ponens. Here’s a natural
language example—which Phil 115 students are probably sick of.⁷

P1 It’s raining.

P2 If it’s raining, then it’s wet.

∴ It’s wet.

6. Hint: if you try this, you may be trying for a very long time…
7. Recall that the symbol ∴ in the following means ‘therefore’.
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This argument certainly seems valid—and thankfully, it is according to the sys-
tem of propositional logic we sketched earlier. In fact, every argument that ex-
hibits this basic structure is valid in propositional logic.That seems like a good
thing, prima facie. It’s difficult to even think of natural language arguments
that (intuitively) invalidate modus ponens.

It’s difficult, but (arguably) it’s not impossible. Vann McGee (1985), for exam-
ple, believes the following argument is a counterexample to modus ponens:⁸

P1 If a Republican wins the election, then if it’s not Reagan who wins it will
be Anderson.

P2 A Republican will win the election.

∴ If it’s not Reagan who wins it will be Anderson.

The first premise seems plausible. (Suppose a Republican wins. Then, if there
are only two such Republicans in the running—Reagan and Anderson—if it’s
not Reagan, it has to be Anderson.) Similarly, the second premise is plausi-
ble. (Suppose you’re back in 1985, just prior to the votes being counted. The
polls heavily favor a Republican win.) But the conclusion seems implausible:
Reagan was a popular politician at the time. But Anderson was a laughing
stock.

More generally, McGee thinks that arguments that exhibit the following struc-
ture are counterexamples to modus ponens:

P1 (ϕ ⊃ (¬ψ ⊃ χ))

P2 ϕ

∴ (¬ψ ⊃ χ)

McGee justifies his claim by saying that it’s easy to find instances of the above
schema where we believe P1 and P2, and yet do not believe the conclusion

8. This isn’t quite true. Vann McGee believes that modus ponens isn’t a valid rule of
inference for natural language conditionals, like those below. But he also doesn’t believe
that natural language conditionals are the material conditional.

of the argument. This is strange since valid arguments—of which McGee’s
schema alleges to be one—are supposed to be “truth-preserving”.

What do you think?

7. Predicate Logic

So far, we’ve focused on propositional logic. But we can extend our formal
system to encompass predicate logic, too. In that case we extend our language
with additional symbols:

• Names: a, b, c, ...

• Variables: x, y, z, ...

• Predicate symbols: F, G, R, ...

• Quantifiers: ∀, ∃

We also add the following formation rules:

• Fa, Fb, Ga, Gb, Rab, Rba, etc., are formulas:

• If ϕ is a formula in which the name a appears, then so is (∀x)ϕ(a := x)
and (∃x)ϕ(a := x). (Here ‘(a := x)’ means ‘where each instance of the
name a is replaced with the variable x’.)

The details of this extension to the language of propositional logic isn’t so
important. All I want to note is that it can be done.

Likewise, we can extend our deductive system with new axioms, and new
rules. The additional axioms are often taken to be these:

• (∀x)ϕ ⊃ ϕ(x := a)

• (∀x)(ϕ ⊃ ψ) ⊃ (ϕ ⊃ (∀x)ψ).

And the additional rule is:

• Universal Generalization. From ϕ, infer (∀x)ϕ.

We’ll talk more about predicate logic in subsequent weeks.
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PHIL 210/510: Formal Methods Yale, Spring 2025
Lecture 3: Infinity Dr. Calum McNamara

1. Propositional Logic as a Formal System—Again

Last time, we talked a little bit about the formal system of propositional
logic. Recall that, in this formal system, the formal language consists of for-
mulas like p ∧ q (‘p and q’), p ⊃ q (‘If p, then q’), ¬p (‘not p’), and so on.
Meanwhile, our deductive system—or at least, one version of the deductive
system—consists of the following three axiom schemas:

• (ϕ ⊃ (ψ ⊃ ϕ)),

• (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ)),

• ((¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ)).

as well as the following rule of inference:

• Modus Ponens. Given φ and (φ ⊃ ψ), infer ψ.

Challenge Question. Can you derive the formula ((p ⊃ q) ⊃ (p ⊃ p))
from the axioms? How about (p ⊃ p)?

Note that the system of (first-order) predicate logic builds on this formal
system. It does so by enriching the formal languagewith formulas like (∀x)Fx
(‘for all x, x has property F’), and (∃x)Fx (‘there exists an x with property F’),
as well as a couple of new axioms and rules. We’ll talk more about that system
later in the course, when we briefly touch on higher-order logic.

2. The Numbers as a Formal System

Why are we introducing propositional logic in this extremely abstract way?
One reason is that it helps to introduce the notion of a formal system in general.
It’s useful to knowwhat a formal system is, and how to construct one, because
they pop up all the time (albeit, sometimes in disguised ways).

For example, take the natural numbers, N = {0, 1, 2, ...}. As it turns out,
these numbers, together with the usual rules of arithmetic, can also be viewed
as a formal system. Here’s a hint of how that works.

Our formal language consists of the following symbols: the number 0, paren-
theses, and the letter S.¹ Well-formed formulas of the system look like: 0, S(0),
S(S(0)), etc. We can read ‘S(0)’ as ‘the successor of 0’—and this, of course,
is the number 1. Likewise, ‘S(S(0))’ says ‘the successor of the successor of
0’—namely, the number 2, and so on. Thus, we allow ourselves to use ‘1’, ‘2’,
etc., as shorthands for the relevant successors.

Now here are our axioms (these are often called the Peano axioms):

• 0 is a number.

• If n is a number then so is its S(n), the successor of n.

• 0 is not the successor of any number.

• If S(n) = S(m), then n = m. (In other words, every number has a unique
successor.)

• Let P(n) be any statement describing a property pertaining to the num-
ber n. Suppose that P(0) is true, and suppose that, whenever P(n) is true,
then so it P(S(n)). Then P(n) is true for every number n. (This is some-
times called the Principle of Mathematical Induction—we’ll talk about
it more on Wednesday.)

We can think, here, of the second axiom as also describing our one rule of
inference: if we have a number of n, then can conclude that S(n) is also a
number.

As it turns out, these five axioms characterize almost everything we know
about the natural numbers.²

Challenge Questions. Prove—from the axioms!—that 3 is a natural number.
How would you define addition in our system? How aboutmultiplication?

3. Constructing the Numbers from Sets

1. If you did the Russell reading, he uses ‘succ’ instead of S.
2. I say ‘almost’ because when it comes to defining addition, etc., we have to introduce
some additional definitions. For example, we have to stipulate that, for any n, n + 0 =
n.
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At this point, we have assumed the existence of something that “plays the role”
of zero—that’s what our first axiom tells us. But what exactly is the number
zero?

One way to think about the numbers is in terms of sets. In particular, the math-
ematician John von Neumann³ showed that the following model satisfies all
of the axioms we gave above:

• 0 = {} = ∅,

• 1 = S(0) = {∅},

• 2 = S(S(0)) = {∅, {∅}},

• 3 = S(S(S(0))) = {∅, {∅}, {∅, {∅}}}.

• Etc.

So, roughly: von Neumann’s definition says that the natural numbers are what
we get by starting with the empty sets, and then forming sets, recursively, out
of everything that came before.

4. The Infinite

It’s clear that our operation S—or the set operations used in von Neaumann’s
hierarchy—can be used to “generate” numbers indefinitely. That is, even
though every number n is finite, the set of all natural numbers is infinite.

That’s still a bit vague, however. So how can we get a handle on it? Well, let’s
start again by thinking about the natural numbers, 0, 1, 2, 3, .... Now think
about the even numbers, 0, 2, 4, 6, .... Notice something weird. We can write
a list in which every even number is paired off, one to one, with a natural
number:

0. 0

1. 2

3. You should Google vonNeumann. He contributed to just about every field of human
inquiry you can think of.

2. 4
...

So, the weird thing here is that, even though it looks like there should be half
as many even numbers as natural numbers, nevertheless we can pair them off
one-to-one.

Interestingly, the same thing goes when we consider a set that looks like it
should have more numbers than the natural numbers. For instance, consider
the set of all integers: Z = {...,−2,−1, 0, 1, 2, ...}. Once again, we can pair
the integers off one-to-one with the natural numbers:

0. 0

1. 1

2. −1

3. 2

4. −2
...

This is weird. After all, the even numbers are a proper subset of the natural
numbers. And the natural numbers are a proper subset of the integers. Thus,
the examples we gave above lend themselves to a definition of ‘infinite set’

Definition (Infinite Set). A set A is infinite iff it can be put into a one-to-one
correspondence with one of its proper subsets. It’s finite otherwise.

Definition (Countable). A set A is countable iff either (a) it’s finite, or (b) it
can be put into one-to-one correspondence with the set of natural numbers.
It’s uncountable otherwise.

The above also lends itself to a definition of “size” for sets:

Definition (Cardinality). Two sets A and B have the same cardinality (viz.,
size) iff their members can be put into one-to-one correspondence.

5. The Uncountable
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Let’s consider onemore example. Can the set of rational numbers—i.e., num-
bers of the form n/m—be put into a one-to-one correspondence with the set
of natural numbers? In other words, can does the set of rationals, Q, have
the same cardinality as N? Amazingly, the answer is ‘Yes’. To see how, con-
sider the following image (ripped from David Papineau’s book Philosophical
Devices):

The idea here is that the “fraction” 1/1 goes in position 1; 1/2 goes in position
2; 2/1 goes in position 3; 1/3 goes in position 4; and so on.

Thus, once again, even though it looks like there are “more” rational numbers
than natural numbers, that turns out not to be true: Q can be put into one-
to-one correspondence with N. This might lead you to wonder whether every
infinite set has the same size as N. Bafflingly, the answer turns out to be ‘No’.
To illustrate, consider the set of real numbers, R. This is the set of all num-
bers that can be expressed as an infinite decimal expansion. This includes the
naturals, the integers, and the rationals, but also “irrational numbers” like π

and e.

To see that there are more reals than naturals, consider the following (incin-
dentally, the proof here also illustrates one of the proof techniques we’ll talk
about on Wednesday). Suppose all the real numbers between 0 and 1 can be
put on a list, e.g.:

0. 0.1237263...

1. 0.43847485...

2. 0.4548457...

3. 0.3843758...
...

I claimwe can construct a number that’s guaranteed not to be on this list. To do
so, we make the first digit one more than the first digit of the first number in
this list, the second digit one more than the second digit of the second number,
the third digit one more than the third digit of the third number, and so on . .
. (using 0 as ‘one more than 9’ whenever the nth digit in the nth number is 9).
Thus, the number we can construct, given the list I wrote, is: 0.2454....

Notice, however, that given our supposed initial listing of the reals between 0
and 1, our new number can’t be anywhere in the original list, since it differs
from the first number in the first digit, from the second in the second digit,
and so on.

Thus, what we’ve shown here is that the real numbers cannot be put into one-to-
one correspondence with the natural numbers. More broadly, what we’ve shown
is that there are infinite sets of different sizes.The set of natural numbers, despite
being infinite, turns out to have strictly fewer elements than the set of real
numbers. (The technique we used here is called diagonalization.)

6. The Continuum Hypothesis

As it turns out, this result is related to the power set operation, which we talked
about in the first class. If we start with an infinite set A, then the power set of
A, pow(A), is also an infinite set, which is strictly “bigger” than A!

This turns out to be true of R: its cardinality is equal to the cardinality of the
power set of the natural numbers. But is there an infinite set whose cardinality
is strictly between these two? This is known as the continuum hypothesis.
The answer is: we don’t—and can’t—know. It can be shown the truth or falsity
of this statement is independent of the formal system of set theory, which
we considered in the first class.
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PHIL 210/510: Formal Methods Yale, Spring 2025
Lecture 4: Proof; Bits and Pieces Dr. Calum McNamara

1. How to Prove Things

In this class, you’ll sometimes be asked to prove a certain statement. For ex-
ample, a typical problem set question might look like:

Problem. Show that conditionalization preserves conditional probabilities.
That is, show: pA(B | A) = p(B | A).

(Don’t worry if you don’t understand what any of that means yet—you will
soon.) In order to do this, it’s worth having a few techniques in your back
pocket. So that’s what I’ll introduce you to now.

1.1 Unpacking Definitions

One of the first things you’ll want to do in a proof is unpack the definitions
you’ve been given. For example, consider the problem above. It asks you to
show that two conditional probabilities are equal: pA(B | A) and p(B | A).
Given this, it’s often a good idea to start by unpacking the relevant definition—
in this case, the definition of conditional probability: p(B | A) = p(A ∧
B)/p(A). (Again, don’t worry if you don’t know what this means. You will
soon!)

Let’s try an example—one that you will know something about already:

ChallengeQuestion. Show that, if A ⊆ B, then A ∈ Pow(B).

1.2. Proving ‘if’ Statements

You will sometimes be asked to prove statements that make use of the word
‘if’—statements like this:

ChallengeQuestion. Show that, if A ⊆ B and B ⊆ C, then A ⊆ C.

When you’re asked to prove statements like this, the first thing you’ll want
to do is suppose the ‘if’ part. You can then prove the part after ‘if’, given this
supposition.

1.3. Proving ‘if and only if’ Statements

You will sometimes be asked to prove statements that involve the words ‘if
and only if’ (or ‘if’ for short). Good news. This really just involves proving
two ‘if’ statements. To illustrate, supposer we want to prove the following:

Challenge Question. Let A and B be sets. Then, prove that A ⊆ B iff A ∩
B = A.

Here, you start by supposing that A ⊆ B, and then show that A ∩ B = A.
You then suppose that A ∩ B = A, and then show that A ⊆ B.

1.4. Proof by Contradiction

Suppose we want to show that the following is true:

ChallengeQuestion. Show that: A ∩ (B \ A) = ∅.

One way you can do this is to suppose the inequality does not hold, and then
show that, given this supposition, we can reason our way to a contradiction.

1.5. Proof by Induction

Remember the Principle of Induction, from our discussion of the Peano axioms.
It said that: if P is a property of numbers, P(0) is true, and if P(k) is true, then
this implies that P(k + 1) is true (for some arbitrary k), then P(n) is true for
all n.

This technique—proof by induction—can be applied tomore than just numbers.
For example, it often works when we want to prove things about a logical
language:

ChallengeQuestion. Prove that every well-formed formula of propositional
logic has an even number of parentheses.

Here, we start by showing that the “atomic formulas” have an even number of
parentheses (namely, 0). We then suppose arbitrary formulas φ and ψ have an
even number of parentheses. Next, we prove that every formula we can build
from these formulas, using the formation rules, also has an even number of
parentheses. Induction then lets us conclude that every well-formed formula
has an even number of parentheses.

1



(Note: If you need to use induction to solve a homework problem, I’ll usually
mention this in a hint.)

2. Use and Mention

Let’s now take a look at something completely different. Remember how,
when I introduced propositional logic, I said that formulas like p, p ∧ q, etc.,
were formulas in our formal language. In contrast, when I wanted to speak in
general, about statements of the formal language, I used Greek letters, like φ

and ψ.

This distinction—between using words/sentences and merely speaking about,
or “mentioning”, words/sentences—is important. It’s called the use/mention
distinction. We can illustrate it, in English, with a simple example. Is the fol-
lowing sentence true or false? If it’s false, how can we make it true?

(1) net is part of a clarinet.

A harder example. Suppose I supply the following instructions to a bakery:

(2) Bake me a cake, and write God bless everyone inside a heart.

It’s hard to figure out exactly what these instructions are supposed to mean.
One ambiguity results because the phrase ‘God bless everyone’ is being used
here, when it really needs to bementioned. How can we supply quotes to make
the sentence less confusing?

Here’s another example, involving the Pig andWhistle pub in Oxford. Suppose
I write an email to a sign-writer, who’s made the sign for the pub. I say:

(3) There needs to be more space between pig and and and and and whistle.

Again, this is extremely hard to parse. How can we make it clearer?

Thus, the general rule is: when you are using a word, you do not use quotes;
but when you are (merely)mentioning that word, talking about the word itself,

rather than the thing to which it refers, then you do use quotes.

If you think you’ve got your head around these ideas, here’s a problem to
ponder. Suppose that we used the word ‘leg’ to refer to a horse’s tail. Then,
how many legs does a horse have?

3.Quotes and CornerQuotes

Consider the following sentence from MacFarlane’s notes (p. 1):

(4) Where ϕ and ψ are formulas, (ϕ ∧ ψ) is true in a modelM iff ϕ is true
in M and ψ is true in M.

We could try to re-write this sentence to account for the distinction between
use and mention as follows:

(5) Where ‘ϕ’ and ‘ψ’ are formulas, ‘(ϕ ∧ ψ)’ is true in a model M iff ‘ϕ’
is true in M and ‘ψ’ is true in M.

But we run into problems here since ϕ and ψ aremeta-variables whose values
are true in the model M. In other words, the expression ‘ϕ’ merely denotes
the symbol ϕ, which is not itself a formula of propositional logic.

Thus, we need to find a way around this problem. Quine—creative fellow that
hewas—invented themethod of so-called quasi-quotation, or corner-quotes, for
this purpose. Using corner quotes, we can rewrite the initial sentence like this:

(6) Where ϕ and ψ are formulas, ⌜(ϕ ∧ ψ)⌝ is true in a model M iff ϕ is
true in M and ψ is true in M.

We can thus think of corner-quotes as a kind of notational shortcut. In partic-
ular, ⌜(ϕ ∧ ψ)⌝ is a notational shortcut for: ϕ concatenated with ‘∧’ concate-
nated with ψ.

Here’s a harder example:
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Challenge Question. Supply quotes and/or corner quotes to the follow-
ing sentence, to make it true: For several definite descriptions D, Winston
Churchill said We shall fight on D.

4. Types and Tokens

Consider this sentence:

(7) A rose is a rose is a rose is a rose.

How many words does this sentence contain? On the one hand, it seems sen-
sible to say that it contains three words, namely ‘A’, ‘rose’, and ‘is’. But on the
other hand, it seems equally sensible to say that it contains eleven words.

In fact, both answers are conceivably correct, because the question I asked
was ambiguous. To disambiguate it, we can say: the sentence contains three
word types, but eleven word tokens.

ChallengeQuestion.

5. Analyticity, Necessity, A Prioricity

Statements (in English) can be true for different reasons. Moreover, there are
different ways in which we can discover that a given statement is true, or false.
For example, compare the following two statements:

(8) 2 + 2 = 4

(9) It’s Sunny outside.

Both of these statements are true (at least at the time of writing). But the first
seems to have a special property that the second lacks. Likewise, consider:

(10) I think, therefore I am.

(11) All bachelors are unmarried.

Arguably, these sentences also have special characters, which the second sen-
tence, above, lacks. With this in mind, let us introduce some distinctions.

The Analytic/Synthetic Distinction. A sentence is said to be analytically
true (or just analytic) if it’s true purely in virtue of the meanings of the words.
For example:

(12) Vixens are female foxes.

It’s said to be synthetic otherwise.

TheA Priori/A Posteriori Distinction. A sentence is said to be true a priori
if it’s possible to discern it’s truth “prior to experience”. For example, you don’t
have to go out into the world, conduct experiments, etc., to see that a certain
sentence is a priori true. To illustrate, the first sentence here is often thought
to be true a priori, while the second isn’t—as we say, it’s true a posteriori.

(13) 1 ̸= 0.

(14) Nothing travels faster than light.

The Necessary/Contingent Distinction. Finally, a sentence is said to be
necessarily true if (roughly) it couldn’t possibly be false.¹ It’s merely con-
tingently true otherwise. For example, the first sentence below is necessarily
true, the second merely contingently true:

(15) 1 ̸= 0.

(16) It’s Sunny outside.

ChallengeQuestion. Go through the four sentences that I started this section
with. Which (if any) are true necessarily? A priori? Which are analytic?

1. This definition is a bit circular. We’ll clarify things more, when we get to the next
section—and, more importantly, when we get to modal logic.
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ChallengeQuestion. Historically, it was often thought that analytic = a pri-
ori = necessary. (That’s one reason there’s some overlap in the examples I
gave above.) Nowadays, that view is widely rejected.² Can you think of any
examples of a sentence which is, e.g., necessary, but a posteriori? How about
contingent, but a priori? What about synthetic a priori?

Finally, it’s probably worth knowing the following general facts about these
distinctions:

• The analytic/synthetic distinction is usually taken to be a semantic dis-
tinction.

• The a priori/a posteriori distinction is usually taken to be an epistemic
distinction.

• The necessary/contingent distinction is usually taken to be a metaphysi-
cal distinction.

6. Possible Worlds

Let’s go back to the rough definition I gave of necessary truth. I said: a truth is
necessary if it couldn’t possibly have been false. One issue with this definition,
however, is that appeals to the notion of possibility. And you might think a
sentence’s being possibly true is itself a notion that needs to be defined. How,
then, are we to do this?

A common definition of ‘necessary truth’ in philosophy is truth in all possible
worlds. (This is still rough; we’ll make it more precise in our unit on modal
logic.)

The notion of a possible world is arguably one of the most important notions
to pop up in philosophy—especially in the last hundred-or-so years. We will
use this notion in all of the units to come. But what is a possible world?

Often, in philosophical theorizing, we take the notion of a possible world as
an unanalyzed primitive (the way that mathematicians take the notion of a set

2. Somewhat relatedly, many philosophers now reject the analytic/synthetic distinc-
tion altogether. Can you think of examples which seem to cast the legitimacy of that
distinction into doubt?

as an unanalyzed primitive). The best we can do is give it an informal gloss: a
possible world is a completely specific way the world could be. It’s something
that “decides” the truth of every question you can ask. For example, you might
wonder ‘Is it raining?’ Then, at any given possible world, the answer to that
question will be either ‘Yes’ or ‘No’. Likewise: ‘Can things travel faster than
light?’ There may be possible worlds at which the answer is ‘Yes’. But the
important point is just that, at any given possible world, the question has an
answer.

Later on, we’ll see that we can analyze various things in terms of possible
worlds—e.g., propositions. One interesting thing, however, is that we could
(alternatively) think of possible worlds themselves as propositions (and leave
‘proposition’ as an unanalyzed primitive). On this view: a possible world is a
proposition w such that, for any other proposition p, w either entails p or p’s
negation. This view is popular among higher-order logicians.

One last thing: Are possible worlds real? Almost everyone agrees, the answer
is ‘No’. They’re usual fictions we invent for philosophical theorizing, the same
way, e.g., the frictionless plain is a fiction useful for theorizing.

The great philosopher—the greatest, in my view—David Lewis, however,
thought they are real. They are so useful in theorizing, he argued, that we
should admit their existence. The argument is similar to the way we admit
the existence of numbers—or better, sets—into our ontology, because num-
bers/sets are so useful in our theorizing. Mathematicians acknowledge the ex-
istence of sets, for example, because, in doing so, we can give a foundation for
almost all other mathematical theorizing.The same thing goes, Lewis thought,
for possible worlds.

This, however, strikes many as absurd. It’s silly (they say) to think there’s a real
world where there’s a talking donkey. Or two dragons fight for five minutes,
and the world ceases to exist. And so on.

Lewis was well aware of these objections. But he thought this line of argument
wasn’t enough. As he put it, the most common reaction to his arguments for
modal realism—the view that possible worlds are real—is the incredulous
stare. But as he famously quipped: “I cannot refute an incredulous stare”.
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PHIL 210/510: Formal Methods Yale, Spring 2025
Lecture 5: Formal Semantics I Dr. Calum McNamara

1. Frege on Compositionality

Thanks to our first two weeks spent on mathematical background, you’re now
familiar with the notion of a function. Indeed, you’ve been familiar with the
notion of a function, as it applies to numbers, for some time. We all know, for
example, how to compute the value of 72, given our knowledge of what 7 is,
what the square function, f (x) = x2, is, etc.

The great Germanmathematician, logician, and philosopher Gottlob Frege had
the brilliant idea that meaning in natural language works in a similar way to
the function f (x) = x2. In particular, he thought that we can compute the
meaning of whole sentences, from the meanings of their parts, in a fashion
similar to the way we compute 72 = 49.¹

Frege’s Conjecture. Semantic composition is functional application.

To illustrate this, consider a simple example: the sentence Fred smokes.²
According to Frege, the denotation of a proper name, like Fred is just the
person Fred. Similarly, the denotation of a declarative sentence, like Fred
smokes, is just it’s truth-value—i.e., either 0 and 1. But what about the predi-
cate/intransitive verb smokes?

Fred smokes
Denotation: either 0 or 1

Fred
Denotation: Fred

smokes
Denotation: ?

1. In fact, Frege’s idea leads to a brilliant, alternative foundation for mathematics
known as type theory. Type theory is having a rivival at the moment. It plays a part
in much recent work in philosophical logic—especially so-called higher-order logic—
and metaphysics—especially so-called higher-order metaphysics. If you’re curious, you
should do some googling.
2. Following Heim and Kratzer, I’ll often use boldface text, when I’m mentioning
a word/phrase/sentence, rather than using it, instead of using quotes. Note that this
means by use of boldface does double duty!

Frege’s idea was that we should think of the denotation of a predicate like
smokes as a function—namely, the function which takes in “entities” (like
Fred), and maps them to truth values. Thus we have the following:³

• JFredK = Fred

• JFred smokesK = 1 iff Fred smokes

• JsmokesK = a function that takes in entities, and maps them to 1 iff the
entity in question smokes.

Applying Frege’s idea, with smokes as the function and Fred as the entity, we
thus get:

JsmokesK(JFredK) = 1 if Fred smokes, 0 otherwise.

In this example, the phrase ‘= 1 if Fred smokes, 0 otherwise’ gives the truth-
conditions for the sentence ‘Fred smokes’. In turn, the truth-conditions tell
us what the world would have to be like, in order for a given sentence to be
true.

2. A Digression on Category Mistakes

Consider the following example, which looks a lot like the one we just encoun-
tered:

JsmokesK(JtwoK) = 1 if two smokes, 0 otherwise.

Is this function defined or not? If the function is defined, then it should of
course output 0 (false), since the number two can’t smoke.

But then again, you might think that the function should simply “crash” here,
because the number two isn’t something to which the verb smokes can apply
in the first place.

3. The double brackets here, ‘J’, ‘K’, also denote a function—the denotation function.
It maps words/phrases/sentences to their semantic values.
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This issue divides semanticists (and philosophers!): some say that the function
should output the value 0; others say that it shouldn’t output a value at all.
We’re going to be simple-minded here, however, and assume that functions
like the one above need not “crash” when they’re given funny arguments.

3. Semantic Types

We have already referred (implicitly) to numerous semantic types. For exam-
ple, we have spoken of the type of entities (like Fred); and we have discussed
the fact that these entities are the inputs to functions (predicates). Further-
more, we have discussed the type of truth-values, which are just the numbers
0 and 1.

In this section, we are going to specify recursive rules for determining the
semantic type of any linguistic object. First, let’s denote the domains of the
semantic types we already have at hand as follows:

(i) De is the domain of entities,

(ii) Dt is the domain of truth-values, i.e., the set {0, 1},

(iii) D⟨e,t⟩ is the domain of functions that have entities as their arguments and
truth-values as their values.

This is a good start. But we need more semantic types than this. To illustrate
why. Consider the following sentence: Jack loves Jill, alongside the corre-
sponding syntactic tree: Now, it seems clear that loves Jill should be treated

t

Jack
e

loves Jill
e, t

as a function of type e, t. But it’s also clear that we can break loves Jill down
even further. Doing so results in the tree on the following page. From there,
it’s clear that Jill should have type e. But what about the transitive verb loves?
Well, we want loves to be something that takes in an entity (in this case Jill),
and outputs a function of type e, t. Thus, we can conclude that loves has se-

mantic type e, ⟨e, t⟩, and that the tree may be completed as in the second tree
on the next page.

t

Jack
e

loves Jill
e, t

loves
?

Jill
e

t

Jack
e

loves Jill
e, t

loves
e, ⟨e, t⟩

Jill
e

Examples like this one motivate the idea that we’re going to need many more
semantic types than we currently have. Thus, we’re going to introduce an
infinite family of semantic types, according to a recursive procedure—namely,
the following:

(1) e is a semantic type,

(2) t is a semantic type,

(3) If ϕ is a semantic type and ψ is a semantic type, then so is ⟨ϕ, ψ⟩ (i.e., the
function that takes in things of type ϕ and outputs things of type ψ).

(Note that we’ll often drop the angle brackets, writing things like ‘e, t’ instead
of ‘⟨e, t⟩’, provided doing so doesn’t introduce ambiguity.)

Of course, it’s going to turn out that not every semantic type in this infinite
hierarchy is one that we’ll find commonly in natural language. Nevertheless,
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it’s good to have them all at our disposal—we’re going to need more of them
than you’d think.

4. Syntactic Trees, Briefly

Above we’ve been “breaking down’ sentences (like Jack loves Jill) into their
constituent parts. There are better and worse ways to do this. For example,
which of the following is the correct syntactic tree for the sentence John put
the book on the table? Intuitively, it’s the second. But we need to be able to
say why, exactly, the second tree is the correct one.

John
put the

book
on

the table

John

put
the book

on
the table

Linguists have developed a battery of tests (of which we’ll look at three) for
determining syntactic constituents of sentences. These tests are not, unfor-
tunately, water-tight. But they do function as relatively good heuristics for
determining syntactic constituents.

The first such test is called the short answers test. The idea is that, if some
piece of a sentence can function as a short answer to a question, then it’s likely
to be a syntactic constituent. Here are a few examples.

• Question: What did John put on the table? Answer : The book.

• Question: Where did John put the book? Answer : On the table.

This suggests that the book and on the table are syntactic constituents of
John put the book on the table.

The second test is called the pro-form substitution test. Pro-form is the gen-
eral category of words including pronouns and proverbs. For example, along-
side He, she, etc., we have words like did. Altogether, these words form a
category called the pro-form category.

Thus, our next test is: if some piece of a sentence can be replaced with a pro-
form, then it is likely to be a syntactic constituent of the sentence. To illustrate:

• John put the book there (with there replacing on the table).

• Who put the book on the table? John did (with did replacing put the
book on the table).

Our final test is called the movement test. This test is best explained by means
of example. So consider that we can transform John put the book on the
table into (the rather sententious) On the table John put the book. Or al-
ternatively, we can say On the table is where John put the book. The idea
behind the movement test, then, is that certain units in the sentence naturally
move together. These units are (likely to be) the syntactic constituents of the
sentence.

More on Functional Application and λ-Notation

Having taken the necessary detour through the theory of syntactic structure,
let’s now take another look at a (slightly simplified version of the) tree we
considered before:

t

Jack
e

e, t

loves
e, ⟨e, t⟩

Jill
e
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Earlier, we said that it was possible to determine the semantic type of loves
by looking at the semantic type of Jill and the node connecting Jill to loves.
However, we also want a rule which tells us how put words like loves and Jill
together to get the semantic value of loves Jill. The rule we need is this:

Functional Application (FA). If α is a branching node, {β, γ} is the
set of its daughters, and JβK is a function whose domain contains JγK,
then:

JαK = JβK(JγK).
Here, it’s important to keep in mind the following distinction:

(i) The semantic value of a word is just the thing it denotes. For example,JJillK = Jill (the person).

(ii) The semantic type of a word is the domain of things to which the thing de-
noted belongs. Thus, the semantic type of Jill is De, the domain of entities,
since the person, Jill, is an entity (and not, e.g., a function or a truth-value).

Thus, to compute the semantic value of the node loves Jill in the tree above,
we use functional application. That is, if loves Jill = α, then we have:

Jloves JillK = JlovesK(JJillK).
And as we know, this is going to be a function f , which takes in entities,
and returns more functions. A more traditional notation denoting this func-
tion would be extremely cumbersome, and is worse than useless when the
function has infinitely many arguments and/or values. Thus, for this reason,
semanticists often use a somewhat unusual notation—λ-notation.

Consider, for example, the way Heim and Kratzer (1998) define the successor
function using the following notation:

f (n) = [λn : n ∈ N . n + 1].

This reads: “λn is the function that maps every natural number n to its succes-
sor, n + 1.” More generally, when we see a function rendered in this so-called
λ-notation, we read it as follows. Consider:

[λα : ϕ . ψ].

In words: λ is the function that maps every α such that α is in the domain
specified by ϕ to its value, ψ. Thus, α is the argument variable, ϕ is the
domain condition, and ψ is the value description.

When it is obvious, we suppress the domain condition in the λ-notion. For ex-
ample, if it is clear from context that we’re talking about the natural numbers,
then we can define the successor function as:

[λn . n + 1].

This reads: “the function that maps every natural number n to its successor,
n + 1.”

With the Functional Application rule and λ-notation clearly in mind, then,
here’s a challenge question to end with:

Challenge Question. Which of the following is the correct denotation of
loves?

(1) JlovesK = [λx . [λy . y loves x]],

(2) JlovesK = [λx . [λy . x loves y]].
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PHIL 210/510: Formal Methods Yale, Spring 2025
Lecture 6: Formal Semantics I Dr. Calum McNamara

1. Unfinished Business

Last time, we talked about simple sentences like Fred smokes. Recall that:

• JFredK = Fred

• JsmokesK = a function that takes in entities, and returns the value 1 iff
the entity smokes.

• JsmokesK(JFredK) = 1 iff Fred smokes.

What we’ve done in the last line is compute the truth-conditions for the
sentence Fred smokes. (Note that functions of this form—which output 1 if
an entity has some property, and 0 if it doesn’t have the property—are called
characteristic functions.)

We also ended with some remarks on syntactic structure—we looked at a few
tests, which help us to identify the “syntactic constituents” of sentences. Hav-
ing done that, we then “broke down” the sentence Jack loves Jill:

Jack loves Jill
?

Jack
?

loves Jill
?

loves
?

Jill
?

Challenge Question. As a warm-up, let’s begin today by replacing the
question-marks in the tree structure above with semantic types for the vari-
ous expressions.¹

1. Remember: my use of boldface text in these notes is ambiguous for this section of
the course. I use it—following Heim and Kratzer—both to distinguish between use and
mention, but also when I’m (re-)introducing technical terms, as a kind of emphasis.

The process we just went through to answer this question illustrates the gen-
eral rule we use for “combining” basic parts of sentences, to get meanings for
more complex parts. (Our first example did so as well.)The rule I have in mind:

Functional Application (FA). If α is a branching node, {β, γ} is the
set of its daughters, and JβK is a function whose domain contains JγK,
then:

JαK = JβK(JγK).
Remember that J·K is the interpretation function.² It maps word tokens to
their denotations. Here, it’s important to keep in mind the following distinc-
tion:

(i) The semantic value of a word is just the thing it denotes. For example,JJillK = Jill (the person).

(ii) The semantic type of a word, in contrast, is the domain of things to
which the thing denoted belongs. Thus, the semantic type of Jill is e—viz.,
entities—since the person, Jill, is an entity (and not, e.g., a function or a
truth-value).

To compute the semantic value of the node loves Jill in the tree above, we use
the functional application rule. That is, if loves Jill = α, then we have:

Jloves JillK = JlovesK(JJillK).
Moreover, we know, this is going to be a function f , which takes in entities,
and returns another function.

Semanticists often use a special notation when it comes denoting functions.
It derives from the mathematician Alonzo Church, and is sometimes called
λ-notation.³

2. This function sometimes goes by other names—like ‘denotation function’. Apolo-
gies in advance if I accidentally switch my terminology.
3. As a bit of history, Church is famous for, among other things, the Church-Turing
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Consider, for example, the way Heim and Kratzer (1998) define the successor
function using the following notation: f (n) = [λn : n ∈ N . n + 1]. This
reads: “λn is the function that maps every natural number n to its successor,
n + 1.” More generally, when we see a function rendered in this so-called λ-
notation, we read it as follows. Consider: [λα : ϕ . ψ]. In words: λ is the
function that maps every α such that α is in the domain specified by ϕ to its
value, ψ. Thus, α is the argument variable, ϕ is the domain condition, and
ψ is the value description.

When it’s obvious, we suppress the domain condition in the λ-notion. For
example, if it’s clear from context thatwe’re talking about the natural numbers,
then we can define the successor function as: [λn . n + 1]. This reads: “the
function that maps every natural number n to its successor, n + 1.”

With the Functional Application rule and λ-notation clearly in mind, then,
here’s a challenge question:

Challenge Question. Which of the following is the correct denotation of
loves?

(1) JlovesK = [λx . [λy . y loves x]],

(2) JlovesK = [λx . [λy . x loves y]].

Having done that, can you compute the semantic value of the whole sentence
Jack loves Jill from its most basic parts?

2. The Semantic Value of ‘is’

Roughly speaking, a copular sentence is an is sentence—a sentence contain-
ing the word is. For our purposes, these sentences come in two varieties: (i)
identity sentences, and (ii) predicational sentences.

First, a copular sentence involving identity is one like ‘Rhian is my sister’.
Second, a copular sentence involving predication is one like ‘My sister is nice’.

thesis in the foundations of computer science. He also invented the (formal) notion of
the computer, at the same time as Alan Turing. Later, he became Alan Turing’s doctoral
advisor, at Princeton.

How are we to determine whether a given copular sentence is an identity
sentence or a predicational sentence? Often, you’ll simply able to recognize
this, a priori. However, here are some tests to help:

• The Quantifier Test. Check whether the sentence has quantifiers; if it
does, then there’s a good chance we’re looking at a predicational sentence.
(Example: ‘nothing is expensive’.)

• The Small Clauses Test. Predicational sentences can be naturally embed-
ded into clauses under ‘consider’. (Example: ‘I consider my sister nice’.)

As a rule of thumb, the identity copula functions something like the equals
sign, ‘=’. By contrast, the copula of predication is used to say that some object
has a certain property.

However, why are we even talking about copular sentences and the associ-
ated tests at all? The reason is that, depending on whether ‘is’ is functioning
as the ‘is’ of identity or ‘is’ of predication in a given sentence, it will have dif-
ferent semantic values. To illustrate this, consider the sentence Clark Kent
is Superman. This is clearly the is of identity. Thus, the tree for the sentence,
together with its semantic types, looks like this.

Clark Kent is Superman
t

Clark Kent
e

is Superman
e, t

is
e, ⟨e, t⟩

Superman
e

Plainly, since the type of Superman is e, the type of is in this case must be
e, ⟨e, t⟩. Furthermore, notice that the semantic value of is Superman is:

Jis SupermanK = [λy . y is Superman].
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So it makes sense to say that the semantic value of is, in the identity case, is:

JisK = [λx . [λy . y = x]].

By contrast, consider Fido is ginger, where Fido is a dog. Here, the is is the
predicational is. Rather surprisingly, semanticists generally agree that, in this
case, the semantic value of is is null. That is, it contributes nothing to the
meaning of the sentence Fido is ginger; we could just as well have written
Fido ginger, and ended up with a sentence that is (in a formal sense) equally
meaningful:

Fido is ginger
t

Fido
e is

∅
ginger

e, t

Again, maybe this seems a little surprising to you. But take another look at
the Small Clauses test. Does it make more sense now? Similarly, take a look
at the semantic type of ginger. If is in this case wasn’t null, how would we
have to change ginger?

5.Quantifiers

Let us now consider quantifiers. What, for example, is the semantic type of
someone? Consider the tree on the next page.

Someone smokes
t

Someone
?

smokes
e, t

Plainly, since smokes is of type e, t, we want someone to be a word which
takes in words of the same type as smokes, and outputs a truth-value. Hence,
someone should be of type ⟨e, t⟩, t. Its semantic value is:

JsomeoneK = [λ f . ∃x such that f (x) = 1].

More broadly, we can say that the semantic value of Someone smokes is 1
iff there exists x such that x smokes.

The methodology we’ve employed here allows us to compute the seman-
tic type of quantifiers more generally. For instance, consider Some student
smokes, and its associated tree:

Some student smokes
t

⟨e, t⟩, t

Some
?

student
e, t

smokes
e, t

Since we want Some student to be type ⟨e, t⟩, t, and we know that student
is of type e, t, it follows that some is of type ⟨e, t⟩, ⟨⟨e, t⟩, t⟩. Furthermore, the
semantic value of some is:

JsomeK = [λ f .[λg . ∃x f (x) = g(x) = 1]].

Note that all the other quantifier phrases with which you’re familiar follow
the same pattern. That is, their types are ⟨e, t⟩, ⟨⟨e, t⟩, t⟩. It’s a good exercise
to show this using other phrases, like All students smoke. (Problem set any-
one?)
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6. Predicate Modification

Now consider the sentence Fido is a ginger dog. We know that ginger is of
type e, t and so is dog. So how do we combine ginger and dog in such a way
as to yield something of type e, t, which we know we need higher up in the
tree?

One answer is: we can introduce a new rule called predicate modification.
This rule allows us to simply intersect adjectives like black and dog to give
an object of semantic type e, t, thus avoiding any potential clash. The rule is
formalized as follows:

Predicate Modification (PM). If α is a branching node, {β, γ} is the
set of its daughters, and moreover JβK ∈ De,t and JγK ∈ De,t, thenJαK = [λx . JβK = 1, JγK = 1].

7. Non-intersective Adjectives

But what about the sentence Fido is a green dog. Or alternatively, consider
This is a fake diamond. In these cases, predicate modification would lead to
incorrect results. Why?

The answer is that predicate modification applies only to intersective adjec-
tives. However, fake and diamond, for example, are non-intersective: the set
of objects to which the word fake legitimately applies, and the set of objects
denoted by the word diamond, do not overlap; they have empty intersection.
Similarly the set of objects towhich dog applies, and the set of objects towhich
green applies, have empty intersection. So predicate modification cannot be
used in these cases.

8. Definite Descriptions

We have one last topic to cover before we move on to consider semantics from
a slightly different angle (in Wednesday’s class). This is: definite descriptions.

Consider the sentence The student smokes.

t

⟨e, t⟩, t

The
?

student
e, t

smokes
e, t

Again, smokes has type e, t: it’s a function that takes in something of type
e and returns a truth-value. Likewise, student is of type e, t. But what about
the?

The tree above suggests that the has to be of type ⟨e, t⟩, ⟨⟨e, t⟩t⟩. This is the
same type as that of quantifiers, like some, which we considered a few sec-
tions back. Is the denotation of the also the following function?

JtheK = [λ f .[λg . ∃x f (x) = g(x) = 1]].

(As a reminder, that’s the same function as that denoted by some.) Intuitively
it shouldn’t be. Some student is true is one student smokes; but it’s also true
if five students smoke; or ten students smoke. But the thing picked out by the
seems more specific. We take its semantic value to be:

JtheK = [λ f .[λg . ∃!x f (x) = g(x) = 1]].

Here, ∃!x means ‘there is exactly one thing, x’.⁴ So, uniqueness is an important
feature of definite descriptions.

4. If you took first-order logic with me, you’ll recall that we never introduced the
symbol (∃!x)Fx for ‘There exists exactly one x such that Fx’. But we can think of
(∃!x)Fx as a shorthand for (∃x)Fx ∧ (∀y)(Fy ⊃ y = x.
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PHIL 210/510: Formal Methods Yale, Spring 2025
Lecture 7: Formal Semantics III Dr. Calum McNamara

1. Deriving Truth-conditions

Today, we’re going to start by deriving truth conditions for various sen-
tences.This is something we did in class last time. In particular, we derived the
truth conditions for the sentence Fred smokes, by starting with the semantic
values of the words Fred and smokes:

• JFredK = Fred

• JsmokesK = [λx.x smokes].

(Remember: we read ‘[λx.x smokes]’ as ‘the function that takes in x (where x
is an entity) and maps it to the value 1 iff x smokes’. Thus, the ‘…and maps it
to 1…’ is implicit. As Heim and Kratzer say (1998, p. 36), we’re adopting this
reading as a kind of convention. We could write it out more explicitly in in our
λ-notation. But we won’t.)

Now, to derive the truth conditions for Fred smokes, we use our rule of
functional application (FA), putting Fred in as an argument to the functionJsmokesK:

JFred smokesK = JsmokesK(JFredK)
= [λx.x smokes](Fred)
= 1 iff Fred smokes.

Let’s now use the same methodology to derive the truth-conditions for more
complicated sentences. (When you do this, it’s a good idea to start by writing
down all the semantic values for the words/phrases you’re starting with, if
you know them—just as we did in the case of Fred smokes. If you don’t know
them, we’ll have to start by figuring them out. And to do that, we’ll have to
start by drawing out trees, and labelling semantic types.)

Challenge Question 1. Derive the truth conditions for the sentence Jack
loves Jill.

Challenge Question 2. Derive the truth conditions for the sentence Some-
one smokes. (Note: to derive these truth conditions, you’ll first have to figure
out the semantic value of Someone—which is non-trivial. To do so, we’ll start
by constructing a syntactic tree.)

ChallengeQuestion 3. Derive the truth conditions forThe student smokes.

2. A Problem for Extensional Semantics

Let’s try one more Challenge Problem, which will help us transition to today’s
main topic.

ChallengeQuestion 4. Derive the truth conditions for Lois believes Clark
Kent is Superman.

We’ll do this last question together. First, then, let’s draw out (part of) the
relevant tree diagram:

Lois believes Clark Kent is Superman
t

Lois
e

believes Clark Kent is Superman
e, t

believes
t, ⟨e, t⟩

Clark Kent is Superman
t

Thus, given this tree diagram, you might think that the semantic value for be-
lieves should be something of type t, ⟨e, t⟩—that is, a function which takes in
a truth value (either 0 or 1), and maps it to another function. But this immedi-
ately raises a problem. To see it, consider these two sentences:

• Clark Kent is Superman

• Bruce Wayne is Batman

1



Both of these sentences (let’s pretend) are true true, and thus we have:

JClark Kent is SupermanK = JBruce Wayne is BatmanK = 1.

And so it seems like, when we’re computing the truth conditions for Lois
believes Clark Kent is Superman and Lois believes BruceWayne is Bat-
man, our current theory will say that these truth conditions are the same.
In other words, Lois believes Clark Kent is Superman is true iff Lois be-
lieves BruceWayne is Batman is. After all, in both cases, we’re handing the
function believes the same truth-value—namely, 1!

But this is plainly nonsense. Clearly, Lois could believe one of these sentences,
without believing the other. In fact, the problem is even more rampant than
youmight currently appreciate. Our current semantic theory says that, for any
true sentences φ and ψ, Lois believes one just in case she believes the other.
Thus, our current semantic theory clearly fails.

3. Towards a Solution: Intensions

Our current semantic theory is an extensional semantics. That is, it says the
semantic values of words, phrases, and sentences are just their extensions—
that is, the things those words/phrases/sentences denote at the actual world.
In the case of sentences, these extensions are just truth values. But as we
just saw, this extensional view of sentences leads to problems when it comes
to words like believes.

Thus, to rectify this, we’re going to introduce the notion of an intension. This
is a tricky notion to pin down. For example, Heim and Kratzer (1998, p. 302)
give the rather unhelpful definition of an intension as “a function from indices
to appropriate extensions”, where the “indices” here can be people, times, and
what have you.

As Heim and Kratzer also say, however, we can simplify matters by thinking of
intensions just as functions from possible worlds to extensions. What exactly
is meant by this will become clear as we go along.

4. Enriching our Hierarchy of Semantic Types

To get a better feel for what we mean by intensions, let’s start as follows.
First, let W be the set of all possible worlds.

Now, recall the set De which consists of all the “entities” that obtain at the
actual world. (Whenwe introduced De initially, we left the ‘at the actual world
clause’ implicit.) Clearly, different entities exist at different worlds—Superman
doesn’t exist at our world, for example; but he exists at other possible worlds.
Thus, for each possible world, w, there’s a corresponding set of entities—each
world has it’s own De.

With this in mind, then, let D now be the union of all the sets De.¹ Thus, D is
the set of all individuals, at all possible worlds. And we’ll now think of e-type
expressions, as those that denote entities in the set D.

Given this new notion of the set of entities, we can introduce a hierarchy of
new sets:

• D is the set of all individuals (at all possible worlds),

• Dt = {0, 1} is still the set of truth values,

• Dσ,τ is the set of all functions, which take in elements of the set Dσ and
return objects in Dτ .

• Ds,τ is the set of all functions from W, the set of worlds, to elements of the
set Dτ (whatveer that may be).

Given these sets, we can now enrich our original hierarchy of semantic types:

• e is a type,

• t is a type,

• if σ and τ are types, then so is ⟨σ, τ⟩,

• if τ is a type, then so is ⟨s, τ⟩.

1. In formal notation, this would be written: ‘D =
∪

e De’.
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Thus, for example, objects of type ⟨s, t⟩ are functions which take possible
worlds, and maps them to truth-values. This type, as we’ll see, is really go-
ing to be the key to getting the right results when it comes to sentences like
Lois believes Clark Kent is Superman

(Also, for what it’s worth, I’m not sure why the notation s is used in the case
of intensions. It’s traditional—but a little confusing, in my view.)

5. Characteristic Functions and Propositions

Think again about the type ⟨s, t⟩—the type of functions which map possible
worlds to truth-values. Clearly, such a function is going to take each possible
world, w, map it either to 0 or 1.

Functions like this are called characteristic functions. More generally: for
any given set, A, its characteristic function is the function which takes each
x ∈ A and maps it to 1, and for any x /∈ A, maps it to 0. For example, the
characteristic function of the set E (of even natural numbers) is the function
defined, for every n ∈ N, by:

f (n) =

1 if n if even
0 otherwise.

Every set has a corresponding characteristic function of this kind. And as it
turns out, they’re very, very useful.

Think, for instance, about the notion of a proposition. This is something we
talked about early in the class. One nice thing about our present set-up is that
we’re now able to give a very precise characterization of this notion. Here, for
instance, is how Robert Stalnaker spells this out:

The explication of proposition given in formal semantics is based on a
very homely intuition: when a statement is made, two things go into
determining whether it is true or false. First, what did the statement
say…? Second, what is the world like: does what was said correspond

to it?What, we may ask, must a proposition be in order that this simple
account be correct? It must be a rule, or a function, taking us from the
way the world is into a truth value. But since… we may wish to con-
sider the statement relative to hypothetical and imaginary situations,
we want a function taking not just the actual state of the world, but
various possible states of the world into truth values. Since there are
two truth values, a proposition will be a way—any way—of dividing a
set of possible states of the world into two parts: the ones that are ruled
out by the truth of the proposition, and the ones that are not.

Thus, formal semantics allows us to understand the notion of a proposition as
a characteristic function—it’s the characteristic function for the set of worlds
that are the way the proposition says. Alternatively, since every characteristic
function corresponds to a set, we may now think of a proposition as a set of
possible worlds.

6. Enriching our Semantic Theory

With the notion of an intension—qua function from worlds to extensions—
now in place, we’re going to enrich our semantic theory. Basically, the way
in which we’re going to do this is by relativizing the interpretation functionJ·K to a possible world. Going forward, we make this relativization explicit by
writing ‘J·Kw’. Think of this as saying ‘at w… blah’.

For example, here are some new semantic entries, with the relativization to
w:²

• JsmokesKw = [λx.x smokes at w]

• Jloves Kw = [λx.[λy.y loves x at w]]

• JFred smokesKw = 1 iff Fred smokes at w

But what about the word believes that concerned us at the outset?

2. There’s an important exception to this in the case of names. In particular, we con-
sider names, like Fred, to pick out the same entities at all possible worlds. Thus:

• JFredKw = Fred.
We don’t need to add ‘at w’ to names.
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7. Returning to the Example To answer this question, let’s start by taking
another look at the tree we looked at before:

Lois believes Clark Kent is Superman
t

Lois
e

believes Clark Kent is Superman
e, t

believes
?

Clark Kent is Superman
?

The semantic types listed all seem fine. But what about the types of believes
andClarkKent is Superman?Well, we know the former has to be a function
outputting things of type e, t as its values. And we know that, in this context,
the latter can’t merely be something of type t, since, if that were the case, we’d
run into the same problems we had before. So what is it?

The answer, of course, is that, in this context, Clark Kent is Supermanmust
be of type s, t and thus believes must have type ⟨s, t⟩, ⟨e, t⟩. In other words,
believes is a function which takes in, not truth values, but propositions, as its
arguments. So the tree becomes the following:

Lois believes Clark Kent is Superman
t

Lois
e

believes Clark Kent is Superman
e, t

believes
⟨s, t⟩, ⟨e, t⟩

Clark Kent is Superman
s, t

Given this new tree, we can now give a (rough-and-ready) semantic entry for
believes:³

• JbelievesKw = [λp ∈ D⟨s,t⟩.[λx ∈ D. at all the worlds w′ compatible
with what x believes at w, p(w′) = 1]].

So, the semantic value of believes (at a possible world w) is a function which
takes in a proposition, and maps this to another function, which takes in an
entity x—the believer—and outputs the value 1 just in case x believes that
proposition.

We’re now almost in a position where we can compute the truth conditions for
(sentences like) Lois believes Clark Kent is Superman. But we need to in-
troduce a new compositional rule, analogous to our original rule of Functional
Application, to do this:

Intensional Functional Application (IFA). If α is a branching node
and β, γ are its daughters, then, for any possible world w, if JβKw

is a function whose domain contains λw′.(JγKw′
), then JαKw =JβKw(λw′.(JγKw′

)).

Here, then, is (part of) the derivation:

Jbelieves Clark Kent is SupermanKw

= JbelievesKw(λw′.JClark Kent is SupermanKw′
)

= JbelievesKw(λw′.Clark Kent is Superman in w′)

JLois believes Clark Kent is SupermanKw

= Jbelieves Clark Kent is SupermanKw)(Lois)
= 1 iff Lois believes Clark Kent is Superman at w

3. This is still a little rough. In particular, once we get to modal logic, we’ll introduce
the notion of an accessibility relation between worlds. And once we have that, we
could get rid of all the English on the right-hand side of the equality. But we don’t have
that yet, so we’ll stick with the English gloss.
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Appendix. Answers to ChallengeQuestions

ChallengeQuestion 1. Our basic semantic values are the following:

• JJackK = Jack

• JJillK = Jill

• JlovesK = [λx.[λy.y loves x]].

Now we can use these semantic values to derive the truth conditions of Jack
loves Jill:

Jloves JillK = [λx.[λy.y loves x](Jill)
= [λy.y loves Jill]JJack loves JillK = [λy.y loves Jill](Jack)
= 1 iff Jack loves Jill

Challenge Question 2. Our next task is to derive the truth conditions for
Someone smokes. To do this, however, we first need to figure out the se-
mantic value of Someone. It’s best, here, to start with a tree:

Someone smokes
t

Someone
??

smokes
e, t

From the diagram, we can see that Someone is going to be a function that
takes in things of type ⟨e, t⟩, and maps them to things of type t. Thus: the type
of Someone is ⟨⟨e, t⟩, t⟩What, then, is it’s semantic value? It’s the following:

JSomeoneK = [λ f .(∃x) f (x) = 1].

Think of this as saying: The semantic value of someone is a function, which
takes in other functions, f , and maps them to the value 1, just in case there

exists an argument x, which we can plug into f , such that f returns the value
1.

Now we can derive the truth-conditions for Someone smokes:

JSomeone smokesK = [λ f .(∃x) f (x) = 1](JsmokesK)
= 1 iff there exists an entity that smokes

Challenge Question 3. Now let’s try The student smokes. We’ll use the
same methodology we used in the last question.

The student smokes
t

⟨e, t⟩, t

The
⁇

student
e, t

smokes
e, t

From the diagram, it’s clear that Some is going to have type ⟨e, t⟩, ⟨⟨e, t⟩, t⟩.
What about it’s semantic value? I’ll list all the basic semantic values below:

• JsmokesK = [λx.x smokes]

• JstudentK = [λx.x is a student]

• JsomeK = [λ f .[λg.(∃x) f (x) = g(x) = 1]]

(Why is this the right semantic value for some? Compare it that of someone!)
Now we can compute the other semantic values:

Jsome studentK = [λ f .[λg.(∃x) f (x) = g(x) = 1]](JstudentK)
= [λg.(∃x)x is a student and g(x) = 1]JSome student smokesK = [λg.(∃x) f (x) = g(x) = 1](JsmokesK)
= 1 iff there exists a student who smokes
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PHIL 210/510: Formal Methods Yale, Spring 2025
Lecture 8: The Semantics of Conditionals Dr. Calum McNamara

1. Intensional Semantics Completed

Last time, we met a problem for our Fregean, extensional semantic theory—
namely, it seemed to give bogus results in cases involving words like believes.
To solve this problem, we began introducing the notion of an intension. For
the purposes of this course, you can think of an intension as a function from
possible worlds to truth values. And these, we also said, can be thought of
as propositions.

Introducing intensions meant we had to enrich our type hierarchy, however:

• e is a type,

• t is a type,

• if σ and τ are types, then so is ⟨σ, τ⟩,

• if τ is a type, then so is ⟨s, τ⟩.

(Again, when it comes to the last clause, we’ll focus exclusively on the type
⟨s, t⟩.)

Now, with the notion of an intension—qua function from worlds to
extensions—now in place, we need next to enrich our semantic theory. Ba-
sically, the way in which we’re going to do this is by relativizing the in-
terpretation function J·K to a possible world. Going forward, we make this
relativization explicit by writing ‘J·Kw’. Think of this as saying ‘at w… blah’.

For example, here are some new semantic entries, with the relativization to
w:¹

• JsmokesKw = [λx.x smokes at w]

1. There’s an important exception to this in the case of names. In particular, we con-
sider names, like Fred, to pick out the same entities at all possible worlds. Thus:

• JFredKw = Fred.
We don’t need to add ‘at w’ to names.

• Jloves Kw = [λx.[λy.y loves x at w]]

• JFred smokesKw = 1 iff Fred smokes at w

But what about the word believes that concerned us at the outset? To answer
this question, let’s start by taking another look at the tree we looked at before:

Lois believes Clark Kent is Superman
t

Lois
e

believes Clark Kent is Superman
e, t

believes
?

Clark Kent is Superman
?

The semantic types listed all seem fine. But what about the types of believes
andClarkKent is Superman?Well, we know the former has to be a function
outputting things of type e, t as its values. And we know that, in this context,
the latter can’t merely be something of type t, since, if that were the case, we’d
run into the same problems we had before. So what is it?

The answer, of course, is that, in this context, Clark Kent is Superman must
be of type s, t and thus believes must have type ⟨s, t⟩, ⟨e, t⟩. In other words,
believes is a function which takes in, not truth values, but propositions, as its
arguments. So the tree becomes the following:

Given this new tree, we can now give a (rough-and-ready) semantic entry for
believes:²

2. This is still a little rough. In particular, once we get to modal logic, we’ll introduce
the notion of an accessibility relation between worlds. And once we have that, we
could get rid of all the English on the right-hand side of the equality. But we don’t have
that yet, so we’ll stick with the English gloss.
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Lois believes Clark Kent is Superman
t

Lois
e

believes Clark Kent is Superman
e, t

believes
⟨s, t⟩, ⟨e, t⟩

Clark Kent is Superman
s, t

• JbelievesKw = [λp ∈ D⟨s,t⟩.[λx ∈ D. at all the worlds w′ compatible
with what x believes at w, p(w′) = 1]].

So, the semantic value of believes (at a possible world w) is a function which
takes in a proposition, and maps this to another function, which takes in an
entity x—the believer—and outputs the value 1 just in case x believes that
proposition.

We’re now almost in a position where we can compute the truth conditions for
(sentences like) Lois believes Clark Kent is Superman. But we need to in-
troduce a new compositional rule, analogous to our original rule of Functional
Application, to do this:

Intensional Functional Application (IFA). If α is a branching node
and β, γ are its daughters, then, for any possible world w, if JβKw

is a function whose domain contains λw′.(JγKw′
), then JαKw =JβKw(λw′.(JγKw′

)).

Here, then, is (part of) the derivation:

Jbelieves Clark Kent is SupermanKw

= JbelievesKw(λw′.JClark Kent is SupermanKw′
)

= JbelievesKw(λw′.Clark Kent is Superman in w′)

JLois believes Clark Kent is SupermanKw

= Jbelieves Clark Kent is SupermanKw)(Lois)
= 1 iff Lois believes Clark Kent is Superman at w

2. Conditionals: Why Not a Truth-functional Analysis?

Let’s now turn to an entirely different issue. In this lecture, we’re going to be
interested in the truth-conditions of conditionals—statements involving ‘if’.

The meaning of ‘if’—and conditional statements more generally—is one of the
longest-standing problems in philosophy (and semantics). Indeed, the ancient
Greek poet Calimachus famously said about this problem “Even the crows on
the rooftops are cawing about the meaning of conditionals”.

But wait! You may wonder: ‘Hasn’t this problem been solved? We know the
meaning of statements like ‘If A, then B’ from ordinary propositional logic!’
Recall that in propositional logic, we define ‘If A, then B’—written A ⊃ B—
using the following truth table:

A B A ⊃ B
1 1 1
1 0 0
0 1 1
0 0 1

Thus, according to the truth table, ‘If A, then B’ is false only when the an-
tecedent is true, or the consequent is false. But now here’s a question: Does
this truth table do a good job of capturing the way we use ‘if’ in ordinary
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English?

Among semanticists and philosophers alike, the answer to this question is a
resounding ‘No’. While the first two lines of the truth table seem okay, the
idea that a conditional is automatically true whenever its antecedent is false
seems to licsense bizarre reasoning.

For example, consider that the material conditional A ⊃ B is true whenever
the antecedent, A, is false. In general, however, it doesn’t seem right to say
that we can know that a conditional is true, just because we know that its
antecedent is false. For example, it doesn’t seem right that just because I know
‘It’s raining’ is false (at the present moment), I thereby know the truth of ‘If
it’s raining, then the Mets will win the world series’.

Additionally, if ‘If A then B’ means A ⊃ B, then a negated conditional is equiv-
alent to the following conjunction: A ∧ ¬B. But with that in mind, consider
the sentence ‘If Patch is a rabbit, then she’s a rodent.’ That sounds true. But
the negation of that sentence doesn’t sound at all equivalent to the following
‘Patch is a rabbit and she’s not a rodent.’

More generally, it doesn’t seem like any possible truth-functional analysis of
the conditional works. (To see why, play around the changing the last two
lines of the truth table. If you change the last line from 1 to 0, for example,
then A ⊃ B is equivalent to A ∧ B. But that clearly isn’t right!)

3. Another Problem: Indicatives vs. Subjunctives

There’s another problem with the “material conditional” analysis of condition-
als, however. To see it, consider the following sentences:

(1) If Shakespeare didn’t write Hamlet, then someone else did.

(2) If Shakespeare hadn’t written Hamlet, then someone else would have.

Here, the first sentence seems to be true, but the second seems to be false. It’s
not clear, however, how we can distinguish this, if ‘If A, then B’ just means
A ⊃ B’. (In particular, notice that the A and B in this case would have to
be the same ‘hadn’t written Shakespeare’ doesn’t make sense on its own—the

past-tense morphology seems only to make sense when embedded within the
conditional context.)

Statements like (1) are often referred to as indicative conditionals, while
statements like (2) are referred to as subjunctive conditionals or counter-
factuals.³ It’s widely agreed that natural language conditionals come in these
two kinds—but there’s only one “kind” of conditional in propositional logic,
namely, the material conditional.

4. A Better Theory—the Variably Strict Theory

To get around the problems just mentioned, a number of alternative accounts
of ‘if’ statements have been proposed. For example, an early attemptwas to say
that ‘If A, then B’ in English really means something more like ‘Necessarily, if
A, then B’. In other words: ‘There’s no possible world in which A is true, and
B is false’. This theory is sometimes called the strict conditional theory of
the conditional. I don’t like it much.

Another theory was put forward by Angelika Kratzer, based on some remarks
fromDavid Lewis. Kratzer’s idea was that ‘if’ acts as a kind of quantifier: to say
‘If A’ is to quantify over a domain ofworlds—namely, worlds atwhich A is true.
It follows (on Kratzer’s view) that ‘If A, then B’ is true, just in case every world
in this restricted domain is a B-world. This is called the restrictor theory. I
like it more than the strict conditional theory—but I still have problems with
it.

For the purposes of this course, then, we’re going to focus on a theory due
to Robert Stalnaker (1968) and David Lewis (1979). It’s usually known as the
variably strict theory.

To motivate it, let’s start with some famous remarks from the philosopher
Frank Ramsey (1929):

”[i]f two people are arguing ’If A will B?’ and are both in doubt as to
A, they are adding A hypothetically to their stock of knowledge and
are arguing on that basis about B.

3. We’ll use both terms in this course.
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This is sometimes known as the Ramsey test for conditionals—they idea is,
when we consider ‘If A, then B’, we first suppose the antecedent, A, and then
ask whether B.

The problem with this, however, is that Ramsey’s remarks are about belief,
but what we want is a set of truth conditions for conditionals. So can we trans-
late Ramsey’s idea from one involving “belief conditions” to truth conditions?
Robert Stalnaker (1968) provides a very compelling answer:

How do we make the transition from belief conditions to truth condi-
tions[?]… The concept of a possible world is just what we need to make
this transition, since a possible world is the ontological analogue of
a stock of hypothetical beliefs. The following set of truth conditions,
using this notion, is a first approximation of the account that I shall
propose: Consider a possible world in which A is true and which other-
wise differs minimally from the actual world. ‘If A, then B’ is then true
(false) just in case B is true (false) at that possible world.

More generally, then, Stalnaker’s idea is that ‘If A, then B’ is true at a possible
world w just in case B is true at the A-world that’s “minimally different” to
w. In the jargon, we say that this A-world is the closest or most similar
A-world to w.

Can we make this more precise, however? We can—and we’ll do so a little
bit today, but also a little bit in our section on logic, later in the course. For
today, all we’ll do is start by introducing a function f , which Stalnaker calls a
selection function.

Formally, a selection function f : Pow(W) × W → W is a function which
takes a proposition A, and a world w, and maps these to an A-world—namely,
the closest A-world to w. (Recall that we’re thinking of propositions as sets
of possible worlds—or, equivalently, as functions from worlds to truth-values.
Thus, if W is the set of all possible worlds, then the power set of W, Pow(W),
is the set of all propositions.)

5. What makes a world ‘closest’?

David Lewis (1979) gave a very similar semantics for conditionals to Stalnaker.

(Onemajor difference is that Lewis thinks there can be multiple “equally close”
A-worlds to w, while Stalnaker denies this. Later on in the course, we’ll speak
more about this idea.) Unlike Stalnaker, however, Lewis gives a pretty elabo-
rate account of what we mean by ‘closest A-world’.

As he says, ‘closest’ here can’t mean anything like our pre-theoretic notion of
‘closest’. After all, consider the following issue, raised by Kit Fine:

The counterfactual ‘If Nixon had pressed the button there would have
been a nuclear holocaust’ is true or can be imagined to be so. Now sup-
pose that there never will be a nuclear holocaust. Then that counter-
factual is, on Lewis’s analysis, very likely false. For given any world in
which antecedent and consequent are both true it will be easy to imag-
ine a closer world in which the antecedent is true and the consequent
false. For we need only imagine a change that prevents the holocaust
but that does not require such a great divergence from reality.

Fine’s point here is that a world in which there’s all out nuclear world is very
dissimilar (viz., not very close), in an intuitive sense, to the actual world. But of
course, the counterfactual ‘If Nixon had pressed the button there would have
been a nuclear holocaust’ seems intuitively true.

Faced with this sort of issue, Lewis proposes the following account of what
should make a world count as ‘closest’:

(i) It should match the actual world up until a time shortly before A,

(ii) It should match the actual world’s laws of nature.

If the laws of nature are deterministic, however, then no A-world can satisfy
perfectly (assuming the actual world is not an A-world).

Lewis thus says that in this case, we should allow that the closest A-world(s)
is (are) ones in which a miracle occurs: a small violation of the actual world’s
laws, sufficient to bring A about.
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PHIL 210/510: Formal Methods Yale, Spring 2025
Lecture 8: Modal Logic I Dr. Calum McNamara

1. Intensional Semantics—Another Computation

To segue into our new topic, let’s start with another exercise in intensional
semantics. Consider:

Calum knows every student will pass this class
t

Calum
e

knows every student will pass this class
?

knows
?

every student will pass this class
?

We’re going to derive the truth conditions for this sentence. But to do so, let’s
start by replacing the question marks with the relevant types.

Challenge Question. Replace the question marks with the correct semantic
types.

Next, we need to figure out the semantic value for knows.

• JknowsKw =?

Challenge Question. Give an entry for the semantic value of knows.

Finally:

ChallengeQuestion. Use the semantic value forknows to compute the truth
conditions for Calum knows every student will pass this class.

2. Modal Logic—What?

If you succeeded in giving a semantic value for knows, you’ll have seen that,

in order to specify this semantic value, you had to talk about relations that
hold between possible worlds. To see what I mean more clearly, consider the
following sentence: ‘It’s possible that Jones smokes’. Clearly, this sentence
could be true, even if Jones doesn’t in fact smoke. After all, it doesn’t seem
like it would violate any natural or metaphysical laws if Jones was a smoker—
which is why we say that it’s possible that she could smoke, even if she doesn’t
in fact smoke. Saying this, however, requires us to say something about things
are like in another possible world, from the perspective of the actual world. For
it to be possible for Jones to smoke at the actual world, it must be that she does
in fact smoke in another possible world.

As a final example, consider again the Stalnaker-Lewis semantics for condi-
tionals:

Challenge Question. Give the Stalnaker-Lewis “viarably strict” semantics
for sentences like ‘If A, then B’.

In a sense, modal logic is the study of relations between possible worlds,
which we need to make sense of these ideas. That’s going to be our topic for
the next couple of weeks.

Broadly speaking, modal logic—at least of the kind we’ll be studying here—is
an extension of standard propositional logic, one which allows us to reason
about statements and arguments involving words like ‘necessary’ and ‘possi-
ble’, but also ‘knows’, ‘ought’, and so on. It’s a powerful tool for philosophers
to have in their toolkit. For example, it’s used all over the place in metaphysics,
epistemology—even in ethics. Modal logic, in its modern form, was initiated
by Saul Kripke in two mid-twentieth century papers (Kripke, 1959, 1963).¹

3. Flavors of Modality

Very roughly, amodal is a word that qualifies the truth of some statement. For
example, consider again the statement ‘It’s possible that Jones smokes’. Notice
again that this statement could be true, even if Jones doesn’t in fact smoke.

1. Amazingly, the first of these papers was published while Kripke was still a teenager;
and the second was published only a year after he completed his undergraduate degree
at Harvard. For a nice overview of Kripke’s ideas, see Ahmed 2007.
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Likewise, imagine I say ‘It’s necessary that Jones smokes’. If this sentence
were true, it would say something stronger than merely ‘Jones smokes’—it
would say, in addition, something like: she couldn’t have failed to smoke.

Modals like these come in many different “flavors”. For instance, there is the
metaphysical flavor of modality, which has to do (roughly) with possibility
and necessity in the broadest sense. There is also the deonticmodality, which
has to do with the notions of obligation and permission. (Examples: ‘Youmay
have a slice of cake’; ‘You ought to keep your promises’. Incidentally, this is
the kind of modality Guillermo was talking about in his presentation.) And
then there is the epistemic modality, which has to do with knowledge and
consistency with one’s evidence. (‘Jones might be in her office’.) There are
many other flavors of modality besides these (e.g., there is also the nomic
flavor, which has to do with what’s possible or necessary according to the laws
of nature). But the flavors just mentioned have been important in philosophy,
historically speaking, and make for a good selection for us to start with. So
they’ll be the ones on which we’ll focus, for the most part, in this course.

4. The Language of Propositional Modal Logic

Modal logic studies the behavior of modals (like those we encountered in the
previous section) in logical contexts. To do this, we need to start by developing
a formal language. Recall the formal language of propositional logic, that we
encountered earlier in the course. In the present case, we enrich this language
with two new symbols, □ and ♢ (pronounced “box” and “diamond”, respec-
tively), which stand in place for various modals. Harking back to the diagram
we looked at earlier in the course, this enrichment gives us something like the
formal system on the next page.

More precisely, in propositional modal logic, we take the formal language
to consist of the following symbols:

• An infinite stock of atomic sentences, p, q, r, etc. (with and without nu-
merical subscripts);

• The truth function connectives, ¬,∧,∨,⊃;²

2. I refuse to include the symbol for ‘if and only if’. If you ever need to use it, you can

The Formal System of Propositional Modal Logic

Formal Language

Symbols

Connectives
Propositional Variables

Parentheses
□
♢

Formation Rules

E.g., if ϕ is a formula,
so is (¬ϕ).

Deductive System

Axioms

∅ (standardly)

Rules of Inference

E.g., modus ponens

• The symbols □ and ♢;

• Parentheses: (, ).

We also introduce the following formation rules. These rules tell us which
are the “gramatically correct” strings of the foregoing symbols. We call the
gramatically correct strings well-formed formulas (or just wffs):

(i) Every atomic sentence, p, q, r is a wff;

(ii) If ϕ is a wff, then so is ¬ϕ;

(iii) If ϕ and ψ are wffs, then so are (ϕ ∧ ψ), (ϕ ∨ ψ), and (ϕ ⊃ ψ);

(iv) If ϕ is a wff, then so are □ϕ and ♢ϕ;

(v) Nothing else is a wff.

Challenge Question. Why do we need clause (v)?

Just as we could have defined certain of the propositional connectives in terms

introduce it as a shorthand for (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ).
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of other connectives (e.g., we can define ‘⊃’ in terms of ‘¬’ and ‘∨’),³ we could
also have defined ♢ in terms of □, or vice versa.

ChallengeQuestion. Show howwe can define□ using♢ and the other truth-
functional connectives. (Hint: think of□ as saying ‘Necessarily’ and ♢ as say-
ing ‘possibly’. Another hint: think about how we can define ∀ using ∃ and the
truth-functional connectives.)

If you managed to crack the previous question, then you’ll have seen that □
and ⋄ act like quantifiers. In particular, they act like special kinds of quantifiers
with a very specific domain: they quantity, not over things we denote with
names, but over possible worlds.⁴ After all, if we think of □ as pertaining to
metaphysical necessity, then□ϕ says (very roughly!—see below) that ϕ is true
in all possible worlds. Similarly, if we interpret♢ as pertaining tometaphysical
possibility, then ♢ϕ says (roughly) that ϕ is true in at least one possible world.
This isn’t quite right, as we’ll say in a moment. But it’s close enough to get us
started.

Note, however, that the particular interpretation we give to□ and ♢ depends
upon the flavor of modality we’re studying. For example, if it’s epistemic
modality rather than metaphysical modality that we’re interested in, then we
can plausibly think of □ϕ as saying ‘ϕ is known’, and ♢ϕ as ‘ϕ is consistent
with one’s evidence.’ Thus, the modal operators,□ and ♢ are context-sensitive.
As we’ll see later, this fact plays an important part in the theory of modal
frames and modal models—to which we now turn.

5. Modal Frames and Modal Models

Recall the truth-tables from propositional logic. These tell us how to assign
truth-values to well-formed formulas (wffs) based on the truth-values given
to the atomic formulas, like p, q, etc. For example, in the last class, we saw the
truth table for the material conditional:

In this section, we’re going to introduce an analogous notion for modal logic.
This is called amodal model. (Good news for those of you took Phil 115 with

3. See note 3 in chapter 1.
4. So far as I am ware, this interpretation of □ and ⋄ is due to David Lewis.

A B A ⊃ B
1 1 1
1 0 0
0 1 1
0 0 1

me:modal models are easier to get your head around than themodels we study
in first-order predicate logic!)

Formally, a modal model is a triple M = ⟨W ,R, I⟩, where W is a set of
possible worlds, R is a relation between the worlds in W , and I is a function
mapping atomic sentences (p, q, r, etc.) to truth-values—namely, their partic-
ular truth-values at the possible worlds in W . Some of these ideas might take
some getting used to. Let’s start off by unpacking the various definitions a bit.

The first element in the set,W , is something you’re already familiar with from
the previous chapter. Sometimes this set is called the universe of the model.
I’ll occasionally use that terminology in the sequel.

The second element, the relationR, by contrast, is known as the accessibility
relation. It is a binary relation between pairs of worlds (so, it’s a subset of the
Cartesian product ofW×W ), and helps to characterize the particular “flavor”
of modality that we’re working with. When some world w1 is R-related to
another world w2, I will sometimes speak metaphorically, and say that w1

“sees” w2. Watch out for that lingo—when you see it, you should read it non-
metaphorically as “w1 isR-related to w2”. Usually, we’ll write ‘w1Rw2’ when
w1 sees w2 (and similarly for other possible worlds).

Finally, the interpretation function, I tells us, as I’ve already said, which
atomic sentences are true at which worlds, and which aren’t, respectively. For
example, it will tell us whether a given atomic formula p is true at w1; whether
it’s true at w2; and so on. (It won’t, however, tell us whether, e.g., (p ∧ q) is
true at w1—more on that in a moment.) Thus, truth, in modal logic, is aworld-
bound notion. Formulas are true (or false) at possible worlds.⁵

5. If you think about this, especially with the notion of propositions as set of possible
worlds in your mind, then this makes sense. Recall from the previous chapter that we
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The set of worlds W and the accessibility relation R together form what we
call the frame of the model. For example, suppose W = {w1, w2, w3}. And
suppose that R = {w1Rw2, w2Rw3}. (That is, the accessibility relation re-
lates w1 to w2 and w2 to w3. I’ll continue to use this notation in what follows.)
Then, diagramtically, the frame ⟨W ,R⟩, looks something like this:

w1 w2 w3

Now suppose that we let the interpretation functionmaps the atomic sentence
p to 1 (i.e., true) at each world, w1, w2, and w3. Then we’d get the beginnings
of a modal model:

p

w1

p

w2

p

w3

In order to specify a modal model completely, however, we need to specify
the truth-value of all propositions at the worlds in the frame M. This said, in
practice we’ll usually only specify the truth-values of a few propositions, so
you need not worry about this being an arduous task.

Now, in addition to the interpretation function I , we also have something
called a valuation function V .⁶ This function takes the model, and then maps
the “complex formulas” ((p∧ q), etc.), includingmodal formulas, to their truth
values at worlds, based on the the set of worlds, accessibility relation, and truth
value of each atomic sentence at each world. (Again, let me stress the point:
in modal logic, formulas are true at possible worlds.) For example, consider the
fact that world w1 in the above Figure “sees” only one world, w2. And at that
world, the atomic proposition p is true. It follows from this that, because p is

said (on one view) propositions are sets of possible worlds. If a particular formula p is
true at w1, then, what that means is that w1 is a member of the set p.
6. Another way to write this: J·K. Thus, our valuation function is none other than the
denotation function from our study of intensional semantics!

true at every world that w1 sees, the valuation function V maps□p to 1 at the
world w1. Thus, paraphrasing □ as ‘necessarily’, we get that p is necessarily
true at world w1 since every world accessible from w1 is p-world.

A bit more formally, here is how our valuation function assigns truth values
to sentences of the our language:

• If p is an atomic sentence, then V(p, wi) = I(p, wi).

• V(¬ϕ, wi) = 1 iff V(ϕ, wi) = 0.

• V((ϕ ∧ ψ), wi) = 1 iff V(ϕ, wi) = 1 and V(ψ, wi) = 1.

• V((ϕ ∨ ψ), wi) = 0 iff V(ϕ, wi) = 0 and V(ψ, wi) = 0.

• V((ϕ ⊃ ψ), wi) = 0 iff V(ϕ, wi) = 1 and V(ψ, wi) = 0.

• V(□ϕ, wi) = 1 iff, for all wj such that wiRwj, VM(ϕ, wj) = 1.

• V(♢ϕ, wi) = 1 iff, for some wj such that wiRwj, VM(ϕ, wj) = 1.

That is: □ϕ is true at world wi (in model M according to the valuation func-
tion VM) just in case ϕ is true at all the worlds wj such that wi sees wj. The
same thing goes for ♢ϕ, except we replace ‘all worlds’ with ‘some world’.

We will say more about the valuation function V in due course. For now, how-
ever, let’s do a little practice.

ChallengeQuestion. Is the formula□p true at w2 in the above figure? Is□p
true at the world w below? How about ♢p?

p

w
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1. Modal Frames and Modal Models

Last time, we were introduced to modal frames and modal models. For-
mally, a frame is a pair, ⟨W ,R⟩, where W is a set of possible worlds, and R
is an accessibility relation—a binary relation defined on the setW . A model
adds to this an interpretation function, I , which specifies the truth-value
of each atomic sentence, p, q, etc., at each world in the model.

Once we have a modal model in place, we can specify the truth-values for
various sentences of our formal language—including modal sentences. These
are given by the valuation function, V , which extends the interpretation
function I :

• If p is an atomic sentence, then V(p, wi) = I(p, wi).

• V(¬ϕ, wi) = 1 iff V(ϕ, wi) = 0.

• V((ϕ ∧ ψ), wi) = 1 iff V(ϕ, wi) = 1 and V(ψ, wi) = 1.

• V((ϕ ∨ ψ), wi) = 0 iff V(ϕ, wi) = 0 and V(ψ, wi) = 0.

• V((ϕ ⊃ ψ), wi) = 0 iff V(ϕ, wi) = 1 and V(ψ, wi) = 0.

• V(□ϕ, wi) = 1 iff, for all wj such that wiRwj, VM(ϕ, wj) = 1.

• V(♢ϕ, wi) = 1 iff, for some wj such that wiRwj, VM(ϕ, wj) = 1.

You’ll notice here that the truth-values of modal sentences, like □ϕ and ♢ϕ

depend, not just on what’s true at the given world w, but also on what’s true
at worlds related to w. This is the key role played by the accessibility relation
R.

But you might wonder: why do we need the accessibility relation? Instead of
having, e.g., □φ be true at w just in case all the worlds that are R-related to
w are ϕ-worlds, why can’t we just say the following: V(□ϕ, w) = 1 iff, for
all worlds w′ ∈ W , V(ϕ, w′) = 1.

The answer is that we want the apparatus of modal logic to allow us to study
all kinds of modals, not just specific ones. And the accessibility relation R
allows us to characterize the flavor of modality we’re interested in.

To see what I mean, consider an example. Suppose we interpret □ as saying
‘It is known that’. Now consider the following modal model:

¬p

w1

p

w2

ChallengeQuestion. Is the formula□p true at w1? If it is, why is that weird?

If you managed to answer the previous question, then you might agree that,
when it comes to the interpretation of □ as ‘It is known that’, we shouldn’t
allow that a sentence like □ϕ can be true at a world, without ϕ itself being
true at that world. After all, in the jargon, knowledge is a factive attitude.

Contrast that, however, with the interpretation of □ as ‘It is morally obliga-
tory that’. Now above model doesn’t look so weird—it’s often the case that
something isn’t morally obligatory, without us actually doing it. So, it might
be that □ϕ is true, even if ϕ isn’t.

As we’re going to see this session—and the next one, and the one after—we use
different accessibility relations when we’re interpreting□ (and ♢) in different
ways. This is really the heart of modal logic.

2. Validity in a Model

First, however, let’s take a bit of a detour.

Recall that in introductory propositional logic, you learned about a special
class of wffs called tautologies. In more advanced logic books, these are some-
times called valid formulas. A valid formula, remember, is one which is true
no matter what truth-values its atomic formulas are assigned. (That’s putting
it roughly, of course; but the rough parse should do to jog your memory.) For
example, (p ∨ ¬p) is a valid formula. This can be seen by looking at its truth-
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table:

p (p ∨ ¬p)
1 1
0 1

As you can see, if p is assigned the truth-value 1, then (p ∨¬p) gets assigned
truth-value 1. Similarly, if p gets assigned the truth-value 0, then (p ∨ ¬p)
still gets assigned truth-value 1. No matter what, then, (p∨¬p) gets assigned
truth-value 1, which means that it is a tautology (valid formula).

Now, in propositional modal logic, we have a corresponding notion of a valid
formula. Here is the (informal) definition:

Validity in a Modal Model. If ϕ is formula of modal propositional
logic, then ϕ is valid in modal model M = ⟨W ,R, I⟩ iff, for every
w ∈ W , ϕ is true at w.

So a formula is valid in a modal model iff it’s true at every world in the model.

Notice how this is an even more demanding notion than a proposition’s being
necessary. In modal propositional logic, recall, a proposition is necessary at a
world w iff it’s true at all the worlds that w sees. This, plainly, is a weaker than
validity.

Now, it’s an interesting fact that, in modal logic, we can sometimes tell
whether a formula is valid in lots of different models just by figuring out
whether it’s valid in one model in particular. The reason for this is that, some-
times, models share certain properties in virtue of having an accessibility re-
lation, R, that itself satisfies certain constraints. For example, the following
formula is valid in all models for which the accessibility relation is transitive:
□p ⊃ □□p. It will thus be useful for us to classify models based on their
accessibility relations. Let’s start doing this now.

3. Classes of Models: K, T, S4, S5

To get the ball rolling, let’s consider a slight variant of our earlier example.
Suppose we’re interested in the wff□p ⊃ p. If you read this as “If It is known

that p, then p”, then it seems strange to say that a modal logic could deny this
proposition’s truth—as we heard before, knowledge is factive. So how could a
proposition be known, without being true?

As we saw, however, the system of modal logic we’ve set up so far allows that
this proposition could be false. Once more, here’s a model which makes that
so:

¬p

w1

p

w2

As you’ll see, □p is true at the world w1, since every world that w1 sees
(namely w2) is a world at which p is true. However, the formula p is false at
w1, since ¬p is true there. Thus, as you’ll remember from propositional logic,
a material conditional ϕ ⊃ ψ is false only in the case in which its antecedent
is true and its consequent is false. So in this case, it follows that □p ⊃ p is
false at w1.

A question naturally arises: What conditions do our models have to satisfy in
order for □p ⊃ p to turn out valid (i.e., true at every world in the model)?
This is the kind of question we’ll be interested in in this section.

A quick note before we get started, however. We’re going to assume that all
our models are so-called K-models. (Here, ‘K’ is for ‘Kripke’—who, as I noted in
a footnote on the last handout, gave the semantics for modal logic that we’re
currently working with.) At the moment, you can think of the K-models as
those for which the accessibility relations can be anything whatsoever. This
isn’t exactly accurate; as we’ll see when we come to the study of characteristic
axioms, assuming our models are K-models is a non-trivial assumption, since
the K-models are characterized by certain substantive axioms. But in practice,
most of the logics modal logicians are interested in are K-models anyway, so
we can put further discussion of what this means to the side for the moment.

Let’s now think again about the wffwe considered above:□p ⊃ p. By inspect-
ing the figure above, it should be reasonably clear that the formula would be
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valid if we altered the model as follows:

¬p

w1

p

w2

Now□p ⊃ p is true at all the worlds in the model. Take world w1 first. Since
w1 now sees itself, as well as w2, it sees a world at which p is false (namely
w1). So the antecedent of□p ⊃ p isn’t true, which (by standard propositional
logic) means the whole conditional is true. Similarly, the only world w2 see is
itself—a world at which p is true. Thus it follows that □p is true at w2. And
since p is true at w2, it then follows that the conditional□p ⊃ p is true at w2.
In short, then: □p ⊃ p is valid in the model above.

What we did to change the model to make the accessibility relation R reflex-
ive. Recall that a reflexive relation is a relation such that, for every x in the
domain of the relation, we have xRx. More carefully, in the special case of
accessibility relations:

Reflexive Accessibility Relation. An accessibility relation R on a
set of worlds W is reflexive iff, for all w ∈ W , wRw.

The relation in the present case is thus reflexive since, for every world w in
the model above, w sees itself—i.e., wRw holds.

We call the class of models with reflexive frames the T-models. (‘T’ is for
‘truth’. The reason for this name will become clear later, though we should
also note that some of the names for classes of models we’ll be interested in
here are adopted for historical reasons, and so don’t always have nice heuristic
names like this one. Unfortunately, you’ll just have to memorize them.) As it
turns out, every model with a reflexive frame—i.e., every T-model—is one in
which the wff□p ⊃ p is valid. More generally, every T-model is one in which
instances of the following schema are valid: □ϕ ⊃ ϕ.

An important thing to note about the relationship between K-models and

T-models is that the T-models are a subset of the K-models. In other words,
every T-model is a K-model (since all the models we’re interested in here
are K-models), but the reverse isn’t true: some K-models aren’t T-models,
because the T-models all have reflexive frames and not all the K-models do.
The relationship can be represented pictorially as follows:

K-models A
T-models

As we’ll see, the relationships between different classes of models often follow
this pattern. For example, some models have reflexive and transitive frames,
which means they’re a subset of the T-models. Recall that a transitive (acces-
sibility) relation is defined like this:

Transitive Accessibility Relation. An accessibility relation R on a
set of worlds W is transitive iff, for all wi, wj, wk ∈ W , if wiRwj and
wjRwk, then wiRwk.

In fact, let’s now consider the class of such models. Here is a pictorial repre-
sentation of the frame of one such model in particular:
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w1 w2 w3

As you can see, this frame is both reflexive and transitive. Every world wi , for
i = 1, 2, 3, is such that wiRwi holds. Moreover, the frame is transitive since,
for every i, j, k, if we have wiRwj and wjRwk, then we also have wiRwk.

The class of models for which the frames are both reflexive and transitive
are called the S4-models. An important schema whose instances hold in this
class of models is the following:□ϕ ⊃ □□ϕ. Instances of this schema do not
always hold in T-models, however.

As a final example of an important class of models, consider the class whose
frames are reflexive, transitive, and symmetric. A symmetric accessibility re-
lation is defined like this:

Symmetric Accessibility Relation. An accessibility relation R on a
set of worlds W is symmetric iff, for all wi, wj ∈ W , if wiRwj, then
wjRwi .

An example of the frame of such a model is, believe it or not, given in the fig-
ure immediately above. I sneakily made the accessibility relation in this frame
symmetric, as well as reflexive and transitive, by making all the arrows be-
tween worlds double-headed. Models whose frames are reflexive, symmetric,
and transitive are called S5-models.

S5-models are important since they are usually considered to be the class of
models corresponding tometaphysical modality, one of the “flavors” of modal-
ity that we considered in the last class. In fact, the different flavors of modality
can all be claimed to have their own associated class of models, characterized
by a particular accessibility relation.

Challenge Question. We already decided that, when □ is interpreted as ‘It

is known that’, the corresponding accessibility relation should be reflexive.
What about symmetry and transitivity? Do you think either of these should
hold when it comes to this interpretation of □?

Challenge Question. Same question, but now interpret □ as ‘It is morally
obligatory that’.

4. Bonus! Partitions¹

A relation on a set that’s reflexive, symmetric, and transitive is called equiv-
alence relation. Momentarily, let’s denote such a relation by ∼. So, if S is a
set, ∼ is a relation ∼⊆ S × S that’s reflexive, symmetric, and transitive.

Now, choose some arbitrary element x ∈ S. The set of all elements y in S that
x ∼ y is called the equivalence class of x. More carefully, the equivalence
class of x—usually written ‘[x]’—is the set:

[x] = {y ∈ S : x ∼ y}.

The set of all equivalence classes of S is called the quotient set of S.

You’ll notice that every element x ∈ S is a member of the equivalence class [x].
And two equivalence classes [x] and [y] are either equal or disjoint. (Why?)
Therefore, the set of all equivalence classes of S forms a partition of S—where
a partition, you’ll recall, is a set of subsets of S that are mutually exclusive and
jointly exhaustive.

This is cool. It says that, really, equivalences relations and partitions are more-
or-less the same kind of thing. Moreover, given that metaphysical modality is
usually thought of as requiring an accessibility relation that’s reflexive, sym-
metric, and transitive, you can think of metaphysical modality as imposing a
partition on the set of all possible worlds.

1. This section is just for the mathematically inclined.
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1. Practice with Validity Proofs

Last time, we were introduced to the notion of a valid formula. Recall that a
formula ϕ is valid in a model M iff ϕ is true at every world in M.

Likewise, we heard that a formula ϕ is valid in a class ofmodels iff ϕ is valid
in every model in that class.

We also looked at ways in which we can constrain our models—namely, by im-
plementing constraints on the accessibility relation,R. For example, demand-
ing that the accessibility relation be reflexive gives us a class of models called
T-models. Likewise, if we demand that the accessibility relation be both re-
flexive and symmetric, then we get a class of models called S4-models. And
so on. As we heard, moreover, it’s these different constraints on accessibility
relations that help us characterize different “flavors” of modality. In the case
in which we’re interpreting □ as ‘It is known that’, for instance, it seems like
we want the class of models to be (at least) T-models.

Finally, I claimed that certain formulas of modal logic come out as valid in
certain classes of models, but not in others. For example, the following formula
is (I claim) valid in all T-models—in any model with a reflexive accessibility
relation:

□φ ⊃ φ (T)

Formulas like this are important, because—aswe’ll see in amoment—they help
to characterize different modal logics. What we’re going to do for the first
part of today, then, is prove claims like the one above. Let’s start with this
claim.

Claim 1. Let M = ⟨W ,R, I⟩ be a modal model. Then, if the accessibility
relation R is reflexive, it follows that all instances of the schema □ϕ ⊃ ϕ are
valid.

Let’s now prove this claim together.

Proof. To make this proof crystal clear, I’ll work through the steps in more
detail than is strictly necessary. To start off, notice that we are trying to prove
a conditional claim—a claim of the form “If such-and-such, then so-and-so”.
As we heard in Lecture 3, when one is trying to prove a claim like this, it’s
usually a good idea to begin by assuming the antecedent of the conditional
one is trying to prove.¹ So let’s do that: suppose that the relation R in the
modal model M is reflexive. Then it follows, by the definition of a reflexive
relation, that each world w ∈ W “sees” itself: wRw.

Now consider the schema □ϕ ⊃ ϕ. Our goal is to show that, given the hy-
pothesis that R is reflexive, it follows that □ϕ ⊃ ϕ is valid. Now, in order
for an instance of this schema to be false at an arbitrary world w in W , we
know that its antecedent needs to be true and its consequent needs to be false
at that world. (That follows from the truth-table for ⊃.) If that’s not the case,
then the instance of □ϕ ⊃ ϕ is true at w. We’re going to show that such an
instance can’t, in fact, be false at w if the accessibility relation R is reflexive.

We’ll do this by using another technique which we discussed in Lecture 3—
namely, proof by contradiction. That is, we’ll assume that, even though R is
reflexive, an instance of the schema□ϕ ⊃ ϕ is false at w. We’ll then show that
this assumptions leads to a contradiction, which lets us reject the assumption
and thus conclude that any instance of □ϕ ⊃ ϕ must be true at w. Further-
more, since our choice of the world w was arbitrary, we’ll be able to conclude
that any instance of □ϕ ⊃ ϕ is true at any world in W—i.e., that such an
instance is valid in the modal modelM. Finally, since our choice of the model
M itself was arbitrary, except for our assumption that its accessibility relation
is reflexive, we’ll be able to conclude that any such modal model will make all
instances of the schema □ϕ ⊃ ϕ valid.

So that’s the plan. Let us now execute it. To start, let w be an arbitrary world

1. As an analogy, think of ⊃-Introduction rule that one often uses in natural
deduction-style proofs in propositional logic.The rule works as follows. Suppose you’re
trying to prove the claim p ⊃ q. Then, one starts off, in a sub-proof, by assuming that
the antecedent, p, is true. One then reasons one’s way to the consequent, q. And then,
having done that, one can “discharge” the assumption, closing the sub-proof and con-
cluding simpliciter that p ⊃ q is true.

1



in W , and suppose that (some instance of) □ϕ ⊃ ϕ is false at w.² By the
truth-table for ‘⊃’, that means that□ϕ is true at w, but ϕ is false at w. By the
definition of ‘□’, we know that □ϕ is true at w iff all the worlds that w sees
are worlds at which ϕ is true. And since R is reflexive (by assumption), we
know that w sees itself. But from this it follows that ϕ is true at w. And now
that contradicts our assumption that□ϕ ⊃ ϕ is false at w, since (as we said a
moment ago) this implies that ϕ is false at w.

As we hoped, then, we have arrived at a contradiction. So □ϕ ⊃ ϕ must,
after all, be true at w. And since our choice of w was arbitrary, it follows that
□ϕ ⊃ ϕ is true at each world w in W . Moreover, since all we assumed about
the model M was that its accessibility relation was reflexive, it follows that
□ϕ ⊃ ϕ is valid in all models with such relations. In other words, if a modal
model has a reflexive accessibility relation, then it follows that all instances of
□ϕ ⊃ ϕ are valid, which is what we were trying to show.

As I said, the above proof includes much more detail than is necessary. But if
you’re seeing proofs like this for the very first time, it can help to spell out
your reasoning in great detail, like I did above, to make each step clear.

Now, let’s look at another important formula of modal logic:

□ϕ ⊃ □□ϕ (4)

Last time, I said that this formula is true in any model with a transitive acces-
sibility relation. We’re now going to prove that, too. Here we go:

Claim 2. Let M = ⟨W ,R, I⟩ be a modal model. Then, if the accessibility
relation R is transitive, it follows that all instances of the schema □ϕ ⊃ □□ϕ

are valid.

2. I’ll sometimes speak of the schema □ϕ ⊃ ϕ as being true at a world, or valid in a
model, etc. But you should bear in mind that this is strictly incorrect. □ϕ ⊃ ϕ can’t
be true, or valid, because it isn’t even a formula. Rather, its instances are formulas. But
again, I’ll continue to speak informally of the schema as being true, valid, etc., in what
follows.

This time, rather than giving you all the gory details, I’ll prove you with a kind
of template, so you can fill in the details for yourself.

Proof. To start off, you should assume (as we did in the previous proof) thatR
is a transitive relation, since we’re trying to prove a conditional claim. Next,
it’s worth recallingwhat it means for a relationR to be transitive. Once you’ve
done that, proceed as we did before. Choose an arbitrary world w in W , and
assume that some instance of □ϕ ⊃ □□ϕ is false at w. Then, use the truth
table for ⊃ to spell out what it takes for such a conditional to be false at w.
Show that this assumption leads to a contradiction. This will allow you to
reject the assumption that the instance of □ϕ ⊃ □□ϕ is false at w after all.
You can then proceed via the same steps we did in the previous proof: since w
was arbitrary, the instance of□ϕ ⊃ □□ϕ is true at all worlds in W , i.e., such
instances are valid; and since the choice of model itself was arbitrary, apart
from the assumption the model had a transitive frame, you can conclude that
all instances of □ϕ ⊃ □□ϕ are valid in models with transitive frames. From
this you can conclude the conditional you were trying to prove is true.

The proofs above made use two techniques, which it’s useful to have in your
toolkit, namely: (i) assuming the antecedent of a conditional, if a conditional is
what you’re trying to prove; and (ii) proof by contradiction. You don’t have to
use these two techniques in your proofs, of course—many other techniques are
available. But in the case of proof by contradiction in particular: if anything
is going to work to establish the claim you’re trying to prove, then this is!

One more thing before we move on. Consider Claim 1 again. That claim, as
we already noted, is a conditional: it says that if a model has a reflexive ac-
cessibility relation, then all instances of□ϕ ⊃ ϕ are valid in that model. Now,
you might be tempted to conclude that the reverse of this is true as well, i.e.,
that, if □ϕ ⊃ ϕ is valid in a model, then its accessibility relation is reflex-
ive. But unfortunately, it isn’t. To see this, consider a diagram we’ve already
encountered:

In this model,□p ⊃ p is valid. (Can you saywhy?) But it isn’t the case that the
frame is reflexive. Thus, we have a counterexample to the conditional claim if
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w1

p

w2

p

w3

□ϕ ⊃ ϕ is valid in a model, then its accessibility relation is reflexive.This fact,
and others like it, are bearing in mind throughout our study of modal logic.

2. The Logics K, T, S4, and S5

Above, I referred to classes of models with names like ‘T-models’, ‘S4 models’,
and so on, where these names were given by features of the associated acces-
sibility relation. Each of these classes of models has an associated logic. What
do I mean by this?

Recall the way we originally set up the formal system of propositional logic,
way back in the second lecture, and also the system of modal propositional
logic at the start of this chapter. In the case of (standard) propositional logic in
particular, I was careful to say that one way we could set up the system was
to have no axioms but lots of inference rules; but another way was to have a
small set of axioms, together with only one inference rule (modus ponens). If
we opted for the latter, then one set of axioms we could use is the following:

• (ϕ ⊃ (ψ ⊃ ϕ)),

• (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ)),

• ((¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ)).

For themoment, let us take the latter view: let us suppose, that is, thatwe’ve set
up the deductive system of propositional logic using the above axioms, rather
than an extensive list of rules of inference and an empty set of axioms. As we
saw, in the case of modal logic, we extend the language of propositional logic
with two new symbols, □ and ♢, to get the language of modal propositional
logic. But how we should we extend the deductive system to account for the
new formulas we can form using these two new symbols?

Well, to start with, we can extend the list of axioms a bit. The most conserva-
tive extension of the above three axioms for modal propositional logic is the

following:

• (ϕ ⊃ (ψ ⊃ ϕ)),

• (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ)),

• ((¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ)).

• □(ϕ ⊃ ψ) ⊃ (□ϕ ⊃ □ψ)

The axiom we’ve added to the list here is called the K-axiom (again, after
‘Kripke’; as you can probably tell, Kripke made quite the impact on modal
logic). In order to do anything useful with this axiom, however, we need an
associated rule of inference to go with it. Alongside the rule modus ponens,
then, let us add the following rule:

Necessitation. From ϕ, infer □ϕ.

At a first pass, this rule looks wrong. After all, couldn’t (an instance of) ϕ

be true (at a world) without being necessarily true? That seems plausible. But
consider how Sider, 2010 justifies necessitation’s legitimacy:

[S]o long as we’re careful how we use our axiomatic system, [necessi-
tation] won’t get us into trouble…. In a proof [in modal propositional
logic], each line must be either i) an axiom or ii) a wff that follows
from earlier lines in the proof by a rule; in a proof from [a set of for-
mulas] a line may also be iii) a member of [that set of formulas] (i.e., a
“premise”). A theorem is defined as the last line of any proof. So every
line of every proof is a theorem. So whenever one uses necessitation
in a proof—a proof simpliciter, that is—one is applying it to a theorem.
And necessitation does seem appropriate when applied to theorems: if
ϕ is a theorem, then□ϕ ought also to be a theorem.Think of it another
way. The worry about necessitation is that it doesn’t preserve truth: its
premise can be true when its conclusion is false. But necessitation does
preserve logical truth. So if we’re thinking of our axiomatic definition
of theoremhood as being a (proof-theoretic) way to represent logical
truth, there seems to be no trouble with its use of necessitation. (205)

Hopefully, that clears up any doubts you might have about necessitation.
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Once we’ve added the K-axiom and the rule of necessitation to our formal sys-
tem, we get a very weak modal logic which is (unsurprisingly, at this point)
called K. (Can you guess why the logic is called this? Also, as an aside, note
that this is why our assumption that our models were K-models was non-
trivial—because there is a close relationship between the class of models, K,
and the logic K. And K includes a new axiom and rule of inference.) The K-
axiom is the so-called characteristic axiom of the modal logic K.

Claim 3. Show that the K-axiom is valid in the class of all K-models.

Adding further axioms to our list gets us stronger modal logics. For example,
if we add □ϕ ⊃ ϕ to our list of axioms, we get a modal logic called T. This
schema □ϕ ⊃ ϕ is called the T-axiom, and is the characteristic axiom of the
logic T.

Similarly, a logic which includes the T-axiom and the following characteristic
axiom, □ϕ ⊃ □□ϕ, gets us the logic known as S4. (That axiom is called the
4-axiom, by the way.)

Now the pattern starts to look relatively clear. Earlier, we considered an addi-
tional class of models—the S5 models. This was the class of models for which
the accessibility relation was an equivalence relation, i.e., reflexive, symmetric,
and transitive. Does S5 then have its own characteristic axiom? The answer
is ‘Yes’. It’s the following, which we call the 5-axiom: ♢ϕ ⊃ □♢ϕ. In words,
this might be read: “If it’s possible that ϕ, then it’s necessarily possible that
ϕ”. A logic which includes the K-axioms, the T-axiom, the 4-axiom, and the
5-axiom, is called the modal logic S5. Arguably, it’s the most important of the
modal logics that we’ll be studying.

As you can see, then, the study of modal logic doesn’t consist just in studying
a single logical system—like in the case of propositional logic or (first-order)
predicate logic. Rather, it consists in the study of a rich family of logics, each
characterized by their own axioms and corresponding classes of models.

Moreover, the family we’ve been introduced to so far—which includes the log-
ics K, T, S4, and S5—isn’t the end of it. Next class, we’ll see that there are
additional logics—with names like B and D—that have their own characteris-

tif axioms and classes of models. Some of these classes of models, moreover,
require very interesting constraints on the accessibility relation—constraints
with names like Euclideanness and Seriality. We’ll see that next class.

But in the meantime, since this handout is shorter than usual, here’s a pretty
picture, which should help you to visualize the relationships between different
kinds of models.

K

D

T

S4 S5

B

(Please appreciate how long this picture took to code.)
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1. Further Systems of Modal Logic: B and D

Last time, I included the following pretty picture on the hand-out, showing
the connections between some of the systems of modal logic we’ve looked at
so far in this class.

K

D

T

S4 S5

B

The systems we’ve studied so far have been:K, T, S4, and S5. You’ll recall that
K is the system of modal logic we get by adding the following axiom to our
list of axioms of propositional logic,□(ϕ ⊃ ψ) ⊃ (□ϕ ⊃ □ψ), alongside the
rule of inference Necessitation: If ϕ, infer □ϕ. Similarly, T is the system we
get when we add the T-axiom to our system:□ϕ ⊃ ϕ. S4 is what we get when
add the 4 axiom to that:□ϕ ⊃ □□ϕ. And finally, S5 is what we get when we
add the 5 axiom to T: ♢ϕ ⊃ □♢ϕ.

Today, we’re going to think about two more systems of modal logic, which
have been historically important. The first is a system called B and the second
is a system called D.

Starting with the former: D is the system that results when we add the follow-

ing characteristic axiom—the D axiom—to the axioms of the logic K:

□ϕ ⊃ ♢ϕ.

Secondly, the modal logic we get by adding the following axiom—the B-
axiom—to the axioms of the logic T gets us a modal logic called B:

ϕ ⊃ □♢ϕ.

It’s worth pausing to think about what these axioms mean. Start with the D-
axiom: reading □ as ‘necessarily’ and ♢ as ‘possibly’, as we’ve been doing,
□ϕ ⊃ ♢ϕ seems to say: “If ϕ is necessary, then it’s possible”. That sounds
plausible. But recall that, at the very start of this chapter, we said that there
could be alternative readings of □ and ♢. Here’s an alternative reading: let □
denote (moral) obligation and ♢ (moral) permission. Then □ϕ ⊃ ♢ϕ seems
to say “If ϕ is obligatory, then ϕ is permitted”.¹ That also seems extremely
plausible.

In fact, themodal logic D—which, as we said, is characterized by the D-axiom—
is often thought to be the quintessential deontic logic (whence it gets its name).
Given the reading of the D-axiom in terms of obligation and permission, that
seems to make sense.

What about the logic B? Does it characterize a particular flavor of modality?
Not so obviously. But here’s one attempt. Historically speaking, the modal
logic B is named after the great Dutch mathematician Brouwer, who founded
what’s called intuitionistic logic.Brouwerwas among thosemathematicians
who thought mathematics should be constructive—that is (roughly), that math-
ematical truth is inseparable frommathematical proof. To put this plainly: take
a statement like the continuum hypothesis, which we discussed earlier in the
course. As we heard, this hypothesis cannot be proved from the standard ax-

1. Note that this is not the same thing as Kant’s famous dictum “ought implies can”.
That confusion is often made with regards to the D-axiom. But in fact, ought implies
can mixes two different flavors of modality: something like the deontic flavor, on the
one hand, and the metaphysical or nomological flavor, on the other.
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ioms of set theory. Still, you might think—indeed, I do think—it nevertheless
has a truth-value. Just because we can’t prove it, doesn’t mean it isn’t true
(or false, for that matter). Brouwer, however, would deny this. On his view—
and the view of the intuitionists more generally), statements which haven’t
yet been proved are strictly speaking neither true nor false. They are, in other
words, indeterminate. (Notice that this view involves denying the famous law
of excluded middle: for any ϕ, ϕ ∨ ¬ϕ).

Thus, one way to read the B-axiom—influenced by Brouwer—is as pertaining
to the notion provability. As an extremely rough parse, you might be able to
read the B-axiom as: “If ϕ is true, then ϕ necessarily has a proof”. That’s worth
dwelling on a bit.

In any case, one interesting thing about the B axiom is that, if we add it to
the logic S4, then we get back the modal logic S5. So, another way we can
axiomatize S5 is by adding by 4 and B to the logic T, rather than the 5 axiom.
Indeed, it’s a good exercise to prove this. (Problem set?)

ChallengeQuestion. Show that any model which validates K, T, 4 and B also
validates 5.

2. Frame Conditions

The foregoing might make you wonder. We know, at this point, that the T
axiom is valid in the class of all models whose frames are reflexive. Similarly,
we know that the 4 axiom is valid in the class of all models whose frames are
transitive. In a sense, then, the T-axiom characterizes the models with reflexive
frames, just as the 4 axiom characterizes models with transitive frames. So:
do the D axiom and B axiom likewise clarify classes of models? That is, are
the D-axioms and B-axioms valid in all models whose frames have certain
properties?

ChallengeQuestion. Which class of models does the B axiom characterize?
(Hint: think about the logic S5.) If you get it, show that B is valid in the class
of models with the requisite kind of frame.

What about the D-axiom?What kind of frame does it characterize? As it turns
out, D is valid in all models whose frames are serial, i.e., have a serial accessi-

bility relation. A serial accessibility relation is the following:

Serial Accessibility Relation. For all worlds W , there exists a world
w′ (possibly equal to w) such that wRw′ holds.

In a slogan, then, we can think of seriality like this as: for each world w, there
is some world that w sees. Alternatively: there are no “blind” worlds.

This condition also helps us to see why the logic D sits above K, but below
T, in the diagram from the first page: Why’s that? Because the T axiom also

K

D

T

S4 S5

B

Figure1: Relationships between different modal logics

requires that there be no blind worlds. But in a sense, it requires a special case
of this. In particular, it requires that every world see itself.

On the next problem set, you’ll be introduced to yet further logics, and you’ll
be asked to show that their characteristic axioms are valid in certain classes
of models. It’ll be fun! Good luck!

3. Soundness and Completeness

We are now going to very briefly talk about the soundness and complete-

2



ness of the systems of modal logic that we’ve been considering. First, however,
what does it mean for a logic to be sound? Complete?

Here are very rough characterizations of the foregoing notions (more formal
characterizations follow shortly). Recall the valuation function, V , which we
discussed extensively before. Aswe said there,V assigns a truth-value to every
formula in a model, based on things like the accessibility relation in the model,
and the truth-values that the interpretation function, I , assigns to the atomic
formulas. Now consider some formula ϕ. Above, we said that such a formula
is valid in a model just in case V(ϕ) = 1 at all worlds in the model.

There is amore general notion of validity inmodal logic even than this (indeed,
we touched on this previously). In particular, we say that a formula ϕ is valid
(simpliciter)² if it is valid in every modal model. (We can also relativize this
notion to the various sytems of modal propositional logic that we’ve studied
so far. For example, a formula is K-valid if it is valid in every K-model.) In other
words, if, no matter what accessibility relation or interpretation function, etc.,
we choose, V(ϕ) = 1, then ϕ is a valid formula (in modal propositional logic).
We write this ⊨ ϕ.³

A related notion is that of a formula ϕ being a theorem of the system of logic
we’re interested in. Recall the various axioms and deductive rules that we’ve
considered. (The latter are modus ponens and necessitation.) A proof of ϕ (in
a system of modal propositional logic) is a finite list of formulas, each line of
which either (i) is an axiom or (ii) follows from earlier wffs in the proof by
one of our rules of inference; and (iii) the last line of the proof is ϕ. If ϕ can
be derived in this way, we say that it is a theorem of the system of logic in
question. (In fact, in a proof, every line can be considered a theorem.) When
this is the case, we write ⊢ ϕ.

Soundness and completeness state relationships between validity and theo-
remhood. In particular, soundness says the following. Let S be a system of

2. Really, we should say something like ‘MPL-valid’ where MPL stands for ‘modal
propositional logic’. But I’ll ignore that bit of verbiage here.
3. Strictly, we should subscript the symbol ‘⊨’ with the system of modal logic we’re
concerned with, e.g., ‘⊨K . Similarly for the symbol ‘⊢’ considered below.

modal propositional logic (e.g., K, T, S4, etc.). Then we have:

S-Soundness. If ⊢S ϕ, then ⊨S ϕ.

A very rough, heuristic way to think about this is the following: If there is a
proof of ϕ in the system S, then ϕ is also a valid formula. In other words, our
axioms and rules of inference don’t allow us to prove invalid formulas. In a
slogan: no false positives.

Completeness for the system S is the converse:

S-Completeness. If ⊨S ϕ, then ⊢S ϕ.

Again, very roughly, if ϕ is a valid formula (in system S), then we can prove
that this is so, given our axioms and rules of inference. Our axioms and rules
of inference, in other words, don’t allow any valid formulas to “slip through
the net”.

It is good news that all of the systems of modal logic that we’ve looked at—
K, T, S4, S5, D, and B—are both sound and complete. Believe it or not, how-
ever, not every formal system has these two properties. (Higher-order logic,
as I’ve mentioned—in which one is allowed to quantify, not only over objects,
but also over properties, operators, etc.—is not complete; there are valid for-
mulas for which no proof of theoremhood exists.) This is a pretty striking
claim. If you find it interesting, you might want to do a bit of reading about
Kurt Gödel’s well-known incompleteness theorems. Note that, importantly—
indeed, this was one of the main upshots of Gödel’s results—is that the formal
system we use in the case of ordinary arithmetic is incomplete.

Here, however, we won’t consider those. Instead, we’ll briefly sketch the proof
of soundness for the system K. Proving soundness is more straightforward
than you might imagine. Once we’ve proved soundness for K, it’s a fairly
straightforward exercise to prove soundness for the other systems of modal
propositional logic that we’ve considered. Proving completeness, however, is
far more demanding, and so we do not attempt to do that here. If you’re inter-
ested in the completeness proofs for any of the systems of modal propositional
logic that we’ve considered, then you might want to consult Sider 2010, or bet-
ter yet, Cresswell and Hughes 1996.
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Here, then, is what we’re going to show:

Theorem 1 (Soundness of K). If ⊢K ϕ, then ⊨K ϕ.

Proof. We proceed by induction.⁴ That is, we first show that the axioms of K
are valid (the base case), and then we show that our rules of inference, modus
ponens and necessitation, preserve theoremhood (the inductive step).

Base Case. First, then, recall that the axioms of K are just the axioms of standard
propositional logic, plus the K-axiom:

• □(ϕ ⊃ ψ) ⊃ (□ϕ ⊃ □ψ).

It is a fairly straightforward exercise to establish that the axioms of standard
propositional logic are valid. So here we consider only the first of these axioms,
and leave the others for the reader to prove as an exercise. Thus, consider the
axiom schema:

• ϕ ⊃ (ψ ⊃ ϕ).

We need to show that all its instances are valid. So, suppose (for reductio) that
some instance of the axiom is not valid in an arbitrary modelM. Then, by the
truth-tables, we know that ϕ is valid inM, but ψ ⊃ ϕ is invalid inM. Again,
by the truth-tables, ψ ⊃ ϕ is invalid only if ψ is valid and ϕ is invalid in M.
But a moment ago, we said that ϕ had to be valid in M. Contradiction! Since
our choice of model was arbitrary, we thus conclude that there can be no such
invalid instance of ϕ ⊃ (ψ ⊃ ϕ).

The proof that all instances of the K-axiom are valid involves similar reasoning.
Assume (again, for reductio) that some instance of □(ϕ ⊃ ψ) ⊃ (□ϕ ⊃
□ψ) is invalid in an arbitrary model M. By the truth-tables, this implies that
□(ϕ ⊃ ψ) is valid and □ϕ ⊃ □ϕ is invalid in M. Since □ϕ ⊃ □ϕ is invalid
in M, it must be that □ϕ is valid in M but □ψ is invalid in M. Since □ψ

is invalid in M, there must be a world w1 such that w1 “sees” a world w2 at

4. Remember that we briefly talked about proofs by induction in Class No. 3! If you’ve
forgotten how that works, it’s worth taking another look at the hand-out from that
class.

which ψ is not true. But since w1 sees w2, ϕ must be true at w2; otherwise,□ϕ

would be false at w1, contrary to what we showed a moment ago, i.e., that□ϕ

is valid inM. Now notice: w2 is a world at which ϕ is true and ψ is false. From
this it follows that ϕ ⊃ ψ is false at w2. And since w1 sees w2, it follows that
□(ϕ ⊃ ψ) is false at w1. But this contradicts our earlier claim, that□(ϕ ⊃ ψ)

is valid in M. We thus conclude that the K-axiom must be valid in M after
all. And since our choice of M was arbitrary, it follows that the K-axiom is
valid in all models. This concludes our proof of the base case.

Inductive step. We now need to show that our two rules of inference, modus
ponens and necessitation, preserve validity. Thus, let us assume that we have
a proof whose first n lines (for n ≥ 0) are valid wffs. We need to show that
n + 1st line is valid. There are three cases to consider: (i) the n + 1st line is
an axiom; (ii) the n + 1st line follows from earlier lines via modus ponens; or
(iii) the n + 1st line follows from earlier lines via the rule of necessitation.
Consider case (i) to start. If the n + 1st line of the proof is an axiom, then it
follows immediately from our proof of the base case that it is a valid wff. So
turn now to the second case. If the n + 1st line is a formula ψ derived from
earlier lines by modus ponens, then it follows that we must have wffs ϕ and ψ

on (separate) earlier lines in the proof. By assumption, ϕ and ϕ ⊃ ψ are both
valid. Hence ψ is valid, since if it were not, then ϕ ⊃ ψ would not be valid,
contradicting our assumption. Lastly, then, consider case (iii). The n + 1st line
of the proof is a wff of the form □ϕ. Since this line follows from an earlier
line by the rule of necessitation, we must have ϕ on a line earlier in the proof.
Again, ϕ is assumed to be valid. By our definition of a valid formula, ϕ is true
at all worlds (in every model M). So it follows immediately that □ϕ is also
valid: for any world w in the model, either (a) w sees no worlds, in which case
□ϕ is vacuously true; or (b) w at least one world. And by our assumption that
ϕ is valid, it follows that every world that w sees is a world at which ϕ is true.
We conclude, then, that the rule of necessitation preserves validity. Moreover,
we have shown more generally that K is sound, as desired.

As I said, it’s a relatively easy exercise to generalize this proof to the other
systems of modal propositional logic that we’ve considered. And doing so is
also a lot of fun. Good luck!
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PHIL 210/510: Formal Methods Yale, Spring 2025
Lecture 13: Conditional Logic Dr. Calum McNamara

1. Lewis-Stalnaker Semantics—Again!

A few sesions back, we talked about the semantics of conditionals (in natu-
ral language). In particular, we focused on the Lewis-Stalnaker variably strict
theory of natural language conditionals, according to which (very roughly) a
conditional sentence ‘If ϕ, then ψ’ is true at a possible world, w, just in case
ψ is true at the “closest” ϕ-world(s) to w.

This gloss of conditionals makes clear that—just like ‘Necessarily ϕ’, etc.—their
truth-conditions depend, not just on how things are at a world, but on how
things are at other possible worlds. Thus, conditionals in English are widely
thought to be modal sentences.

For this reason, you might suspect that we can give a formal account of
conditionals—more formal than the account we previously gave—using some-
thing like our modal models. And indeed, it turns out we can.

2. Stalnaker Models

Recall our account of a modal model, M. This is a triple, consisting of (i) a set
W of possible worlds; (ii) an accessibility relation R between the worlds in
W ; and (iii) an interpretation function I . So: M = ⟨W ,R, I⟩.

Now, on some accounts of conditionals, models like the ones we already have
are sufficient to give a semantics for English language conditionals. For exam-
ple, strict conditional theorists say that sentences of the form ‘If ϕ, then ψ’
in English correspond to necessitated material conditionals: □(ϕ ⊃ ψ).¹

However, in this course, we’re focusing on the Lewis-Stalnaker semantics,
which depends on relations of closeness. And our current definition of the
accessibility relation R doesn’t seem sufficient to capture this notion. After
all, intuitively, we want the notion of closeness to be something like a ternary
relation: world w is closer to w′ than w′′. But the accessibility relation R is

1. If you’re taking the Keith DeRose/Tim Williamson epistemology seminar this
semester: Williamson thinks this about counterfactuals.

merely a binary relation. So again, it doesn’t look like we have the resources
to capture closeness, in the relevant sense, in our present models.

One option, at this point, would be for us to simply introduce a new, ternary
relation into our modal models, of the kind just described. (Indeed, this is how
David Lewis (1973) proceeds.) However, we’re going to come at things in a
slightly different way. As we did previously, we’re going to follow Stalnaker
in introducing a special kind of function into our models. Stalnaker calls this
is a selection function.

To spell this out, let W (again) be our set of possible worlds. Then, let P(W)

be the set of all subsets ofW (the power set ofW ). As we did in the semantics
portion of the course, we think of subsets of W as corresponding to proposi-
tions. Thus, the set P(W) is the set of all propositions.

Now, the set P(W)×W is the Cartesian product of P(W) and W . Intu-
itively, it’s the set of all pairs, where the first element is a proposition, and
the second element is a world. We then define a selection function as follows
(below, I use ϕ, ψ, ambiguously, both for propositions, and for the sentences
that express them):

f (ϕ, w) : P(W)×W → P(W).

So, a selection function is a function that maps a pair consisting of a propo-
sition and a world, to a set of possible worlds. Intuitively, this set of possible
worlds is the set of closest ϕ-worlds to w. (We’ll precisify this idea in a mo-
ment.)

Now that we have this definition in hand, we can extend our previous mod-
els. The result we get is a kind of model known as a Stalnaker model:
M = ⟨W ,R, f , I⟩. This kind of model simply adds a selection function to
our previous kind of model.

We can then extend our definition of the valuation function, from modal logic:

• If ϕ is an atomic formula, then V(ϕ, w) = I(ϕ, w),

• V(¬ϕ, w) = 1 iff V(ϕ) = 0,
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• V(ϕ ∧ ψ, w) = 1 iff V(ϕ, w) = 1 and V(ψ, w) = 1 (and analogously for
the other truth functional connectives, ∨, ⊃, etc.),

• V(□ϕ, w) = 1 iff ∀w′ such that wRw′, V(ϕ, w′) = 1 (and analogously
for ♢ϕ),

• V(ϕ > ψ, w) = 1 iff f (ϕ, w) ⊆ ψ.

Note that, according to Stalnaker, the foregoing applies equally to both indica-
tives and subjunctives. That’s why I’ve used the > symbol in the definition
of conditionals. It’s a place-holder, which can be filled in by either → (the in-
dicative conditional) or□→ (the counterfactual conditional). Lewis thinks the
foregoing semantics only works for counterfactual conditionals. In fact, he’s
one of the very few that think indicative conditionals are just ordinary mate-
rial conditionals. (You might wonder: How, then, does Stalnaker distinguish
between indicatives and subjunctives/counterfactuals? That question, it turns
out, is related to the next point).

Note also that we assume all the worlds in f (ϕ, w) are accessible from w. In
other words, all the worlds “selected” by f , when given ϕ and w as arguments,
are worlds, w′, such that wRw′.

3. Constraining the Selection Function

The foregoing definition gives us a formal—if, admittedly, abstract—semantics
for conditionals. However, there’s an obvious issue with it. How do we know
the selection function f is really going to select anything like the closest ϕ-
worlds to w? At the moment, nothing about the definition of f guarantees
that this function will respect anything like an intuitive closeness relation: the
formal definition merely says this functions maps propositions and worlds to
sets of worlds.

We heard last time about Lewis’s account of closeness in terms of histories,
laws of nature, and miracles. Stalnaker, however, comes at this issue from a
slightly different angle. (Actually, Lewis basically agrees with him about all
this—it’s in his 1973 book, if you’re interested.) In particular, rather than giv-
ing a “metaphysical” account of closeness between worlds, Stalnaker imposes
abstract constraints on the selection function.These constraints don’t allow us

to pin down this relation precisely. But they do guarantee that anything that
could possible function as a relation of closeness between worlds will satisfy
certain properties.

Let’s start with two obvious constraints:

• Success. f (ϕ, w) ⊆ ϕ (the closest ϕ-worlds to w should be ϕ-worlds).

• Centering. If w ∈ ϕ, then w ∈ f (ϕ, w) (if w itself is a ϕ-world, then w
should be among the closest ϕ-worlds to itself).

Those two constraints seem completely obvious. Indeed, it’s hard to know
what ‘closest ϕ-world’ would even mean, if f didn’t satisfy them. (That said,
the Centering constraint turns out to be slightly controversial. We may talk
about that when we get to the section of the course on probability.)

The next constraint is less intuitive. But we need it, if we want the notion of
closeness to form an ordering.

• Reciprocity.² If f (ϕ, w) ⊆ ψ and f (ψ, w) ⊆ ϕ, then f (ϕ, w) = f (ψ, w).

These constraints are sufficient to ensure that relations of closeness formwhat
Lewis calls a system of spheres:

w

Our next constraint is very important, but highly controversial. It’s really the
chief point of disagreement between David Lewis and Stalnaker:

2. Reciprocity was originally referred to using the acronym ‘CSO’. But no one seems
to know what that actually stands for.
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• Uniqueness. | f (ϕ, w)| ≤ 1.

Very roughly, the Uniqueness constraint says that, for any ϕ and world w,
there’s a unique closest ϕ-world to w. (If ϕ is logically inconsistent, then there
are no such worlds at all. But let’s set that case aside.)

Stalnaker is committed to the Uniqueness constraint. But Lewis rejects it. He
says that it’s metaphysically implausible to say that, for any ϕ and w, there’s
a unique closest ϕ-world to w. After all, consider this sentence:

(1) If I had flipped the coin yesterday at noon, it would have landed heads.

If Stalnaker is right, then there’s a unique closest flip-world to actuality. And
it’s a heads-world or a tails-world. But then again—and this, again, is Lewis’s
complaint—this arguably seems strange. After all, we’re assuming that the
coin is fair. So what could make, say, a heads-world closer to actuality than a
tails-world?

Faced with this sort of issue, Lewis rejects Stalnaker’s Uniqueness constraint.
However, Stalnaker himself says that we should think about things differently.
In English, the notion of closeness in playwhenwe utter conditional sentences
is a context-sensitive notion. And usually, context doesn’t pin down this notion
very precisely. Rather, it makes different precisifications of ‘closest ϕ-world’
admissible.

Challenge Question. If this is right, what will Stalnaker say about the truth-
value of a sentence like (1) above? Does this remind you in any way of Al
Hájek’s view?

One last thing. I said above that Stalnaker thinks his semantics applies to both
indicative conditionals and counterfactuals. But youmight wonder: how, then,
are we supposed to distinguish between these conditionals, using this seman-
tics? The answer is that Stalnaker (1975) says that, in the case of indicative
conditionals, we require the selection function to satisfy an additional con-
straint:

• Indicative Constraint. f (ϕ, w) must be an epistemically possible world.

Formally, if B(w) is the set of all worlds you believe could be actual at w,
then we require that f (ϕ, w) ⊆ B(w).

That makes sense if you think about it. After all, constrast the following:

(2) a. # It’s raining, and if it’s not raining, the streets aren’t wet.
b. It’s raining, and if it hadn’t been raining, the streets wouldn’t be

wet.

4. Stalnaker’s Logic

At this point, you might be wondering: Why did we impose those constraints
on selection functions in particular? The answer is that they give rise to a
beautiful logic for conditionals. In other words, remember how, in some sense,
the idea that reflexive accessibility relations “correspond” to the axiom□ϕ ⊃
□□ϕ? Well, it turns out that our constraints on selection functions similarly
correspond to certain axioms.

In particular, Stalnaker’s logic for conditionals—which, historically, is called
C2—has the following axioms:

• PC. All axioms of propositional logic

• Identity. ϕ > ϕ

• MP. (ϕ > ψ) ⊃ (ϕ ⊃ ψ)

• Reciprocity. (((ϕ > ψ) ∧ (ψ > ϕ)) ∧ (ϕ > χ)) ⊃ (ψ > χ)

• Conditional Excluded Middle (CEM). (ϕ > ψ) ∨ (ϕ > ¬ψ)

Here, the Identity axiom corresponds to the Success constraint on selection
functions; the MP axiom corresponds to Centering; Reciprocity corresponds
to Reciprocity (obviously); and CEM corresponds to Uniqueness.

Lewis’s logic for conditionals is basically identical to Stalnaker’s, except that
he rejects CEM. This is really the key difference between Stalnaker and Lewis,
at the level of logic.
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In fact, Lewis rejects CEM for reasons other than that it corresponds to the
Uniqueness constraint on selection functions, and this (he thinks) gives rise to
implausible metaphysical implications. Another reason is that Lewis wanted
to introduce a second conditional operator, ♢→, alongside □→, in the same
way we introduce both □ and ⋄. The former connective is supposed to corre-
spond to the English language ‘might’-counterfactual:

(3) If I had flipped the coin yesterday, it might have landed heads.

And just as we have □ϕ ⊣⊢ ¬♢¬ϕ, Lewis wanted the following principle to
hold for ‘might’-counterfactuals:

• Duality. ϕ □→ψ ⊣⊢ ¬(ϕ♢→¬ψ).

To illustrate, the Duality says the following are equivalent:

(4) a. If I had flipped the coin yesterday at noon, it would have landed
heads.

b. It’s not the case that, if I had flipped the coin yesterday at noon, it
might not have landed heads.

Intuitively, Duality is plausible. But it turns out that any logic that validates it,
together with CEM, entails that ‘might’-counterfactuals entail corresponding
‘would’-counterfactuals. That is, the first sentence below, entails the second:

(5) a. If I had flipped the coin yesterday at noon, it might have landed
heads.

b. If I had flipped the coin yesterday at noon, it would have landed
heads.

That, surely, isn’t right.

Challenge Question. Show that Duality, together with CEM, entails the col-
lapse of ‘might’-counterfactuals into ‘would’-counterfactuals. (You may as-
sume classical logic.)

5. Why the logic C2?

Once you get into conditional logic, you realize that C2 is a very beautiful logic
for conditionals. Why’s that? Well, partly because it’s just about the strongest
logic for conditionals we can come up with, which doesn’t entail that English
language conditionals—either indicatives or subjunctives—just are material
conditionals, ϕ ⊃ ψ.

To see what I mean, here’s an example. Consider the following, additional ax-
iom we might impose on conditionals (which a lot of people like for indicative
conditionals):

• Import-Export (IE). ϕ → (ψ → χ) ⊣⊢ (ϕ ∧ ψ) → χ.

Example: The following sentences are equivalent (according to IE):

(6) a. If I flip the coin, then if it lands heads, I’ll win the bet.
b. If I flip the coin and it lands heads, then I’ll win the bet.

This principle seems extremely plausible, on a first pass. But it turns out, if
you add it to C2, then the logic says indicative conditionals just are material
conditionals. Observe:

(i) Suppose (ϕ ⊃ ψ) → (ϕ → ψ). (This is an instance of the first part of IE
above.)

(ii) Then, by IE, (i) is equivalent to the following ((ϕ ⊃ ψ) ∧ ϕ) → ψ.

(iii) But by classical logic, the antecedent ((ϕ ⊃ ψ) ∧ ϕ) is equivalent to (ϕ ∧
ψ) (you can make a truth-table to show this). So we get that (ϕ ∧ ψ) → ψ.

(iv) But now it follows from Identity and classical logic that (ϕ ∧ ψ) → ψ is a
logical truth. So, this implies that our original formula (ϕ ⊃ ψ) → (ϕ →
ψ) is a logical truth.

(v) But the axiom MP tells us that (ϕ → ψ) ⊃ (ϕ ⊃ ψ) is a logical truth as
well. So ϕ → ψ and ϕ ⊃ ψ are equivalent.
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PHIL 210/510: Formal Methods Yale, Spring 2025
Lecture 14: The Logic of Conditionals Continued Dr. Calum McNamara

1. Indicatives vs. Subjunctives

Last time, we heard about Stalnakermodels, which give the truth-conditions
for English language conditionals—both indicatives and subjunctives. Re-
call the distinction between these kinds of conditionals.

(1) If Oswald didn’t shoot Kennedy, someone else did. (Indicative)

(2) If Oswald hadn’t shot Kennedy, someone else would have. (Subjunc-
tive)

On Stalnaker’s theory, indicatives and subjunctives have a common semantics:
‘If ϕ, then ψ’ is true at a world w, just in case f (ϕ, w) ⊆ ψ. And recall that
f (ϕ, w) is the closest ϕ-world to w. Here, f is a selection function.

In order to ensure that f captures something like a closeness relation between
worlds, we impose constraints on the selection function. The constraints we
looked at last time are:

• Success. f (ϕ, w) ⊆ ϕ (the closest ϕ-worlds to w should be ϕ-worlds).

• Centering. If w ∈ ϕ, then w ∈ f (ϕ, w) (if w itself is a ϕ-world, then w
should be among the closest ϕ-worlds to itself).

• Reciprocity.¹ If f (ϕ, w) ⊆ ψ and f (ψ, w) ⊆ ϕ, then f (ϕ, w) = f (ψ, w).

• Uniqueness. | f (ϕ, w)| ≤ 1. (There’s a unique closest ϕ-world for each
w).

These constraints together ensure that closeness is a total order on the set
of worlds. That is, for each world w, there’s a unique sequence of possible
worlds, ⟨w, w1, w2, ...⟩, which tells us that w is the closest world to itself, w1

is the next closest, and so on.

1. Reciprocity was originally referred to using the acronym ‘CSO’. But no one seems
to know what that actually stands for.

These constraints then give rise to analogous constraints on the logic of condi-
tionals. Stalnaker’s own logic is called C2. It comprises the following axioms.

• PC. All axioms of propositional logic

• Identity. ϕ > ϕ

• MP. (ϕ > ψ) ⊃ (ϕ ⊃ ψ)

• Reciprocity. (((ϕ > ψ) ∧ (ψ > ϕ)) ∧ (ϕ > χ)) ⊃ (ψ > χ)

• Conditional Excluded Middle (CEM). (ϕ > ψ) ∨ (ϕ > ¬ψ)

We then take the closure of these axioms under our old rule of modus ponens,
as well as a new rule—which is basically the version of modus ponens applied
to English language conditionals:

• Detachment. If ϕ and ϕ > ψ, infer ψ.

Challenge Question. Last time, we defined the language with □ as a primi-
tive. It turns out you can define□ (and therefore ♢) using just the conditional
symbol >. Can you say how?

One lingering issue at the moment is that it’s not clear howwe can distinguish
between indicatives and subjunctives in the present set-up. But intuitively,
there’s a strong distinction between those kinds of conditionals.

To rectify this, Stalnaker (1975) says that, on top of the constraints on the selec-
tion function given above, this function must obey an additional constraint in
the case of indicative conditionals. This is: it must select only epistemically
possible worlds—worlds consistent with your knowledge or evidence. More
formally:

• Indicative Constraint. Let Bw be the set of all my “belief worlds” at w.
Then, f (ϕw) ⊆ Bw.

This makes sense, if you think about it. After all, contrast the following:

(3) ?? The coin landed heads and if it landed tails, I won the bet.
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(4) The coin landed heads, and if it had landed tails, I would have won the
bet.

Here, by asserting ‘The coin landed heads’, the speaker (implicitly) tells us they
believe it landed heads.The clashwe get in (3) then comes about because the an-
tecedent of that conditional—an indicative—is inconsistent with the speaker’s
beliefs, violating the indicative constraint. In contrast, such a clash does not
occur in the case of (4). And that’s because—unlike indicatives—the conse-
quent of a counterfactual needn’t be consistent with your beliefs (as the name
implies).

In a slogan, then: indicative conditionals speak about epistemic possibilities.
In contrast, counterfactuals speak about metaphysical (or perhaps causal)
possibilities.

2. The Revenge of the Material Conditional²

Once you get into conditional logic, you realize that C2 is a very beautiful logic
for conditionals. Why’s that? Well, partly because it’s just about the strongest
logic for conditionals we can come up with, which doesn’t entail that English
language conditionals—either indicatives or subjunctives—just are material
conditionals, ϕ ⊃ ψ. (Remember: when we covered conditionals a couple of
weeks ago, one of our key data was that English language conditionals aren’t
material conditionals.)

More carefully, what I mean is that there’s almost nothing we can add to Stal-
naker’s logic, which doesn’t result in > collapsing back to ⊃. Your problem
set this week has a question of this nature. It asks you to show that if we
add the following principle to the logic of conditionals, then English language
conditionals are equivalent to material conditionals:

• Or-to-if. ϕ ∨ ψ ⊢ ¬ϕ > ψ.

Here’s another example (you can use the proof below as a template for the
Or-to-if question). Consider the following, additional axiom we might impose

2. Mostly copy-pasted from last time.

on conditionals (which a lot of people like for indicative conditionals—that’s
why I’ve used the → symbol):

• Import-Export (IE). ϕ → (ψ → χ) ⊣⊢ (ϕ ∧ ψ) → χ.

Example: The following sentences are equivalent (according to IE):

(5) a. If I flip the coin, then if it lands heads, I’ll win the bet.
b. If I flip the coin and it lands heads, then I’ll win the bet.

This principle seems extremely plausible, on a first pass. But it turns out, if
you add it to C2, then the logic says indicative conditionals just are material
conditionals.This fact was first proved byAllan Gibbard, in the 1980s. Observe:

Proof. Consider the following conditional: (ϕ ⊃ ψ) → (ϕ → ψ). By Import-
Export, this is equivalent to ((ϕ ⊃ ψ) ∧ ϕ) → ψ. However, by classical logic,
the antecedent, (ϕ ⊃ ψ) ∧ ϕ, is equivalent to ϕ ∧ ψ. After all, consider the
following truth-table:

ϕ ψ ϕ ∧ ψ (ϕ ⊃ ψ) ∧ ϕ

1 1 1 1
1 0 0 0
0 1 0 0
0 0 0 0

So ((ϕ ⊃ ψ) ∧ ϕ) → ψ collapses to (ϕ ∧ ψ) → ψ.

However, now notice that (ϕ∧ψ) → ψ is a logical truth. After all, think about
our Stalnaker semantics. It says that (ϕ ∧ ψ) → ψ is true at a world w just in
case the closest ϕ ∧ ψ-world is a ψ-world. But by classical logic, ϕ ∧ ψ is true
at a world only if ψ is true at that world. So, (ϕ ∧ ψ) → ψ is true at every
world.

But if (ϕ ∧ ψ) → ψ is a logical truth, then so must be ((ϕ ⊃ ψ) ∧ ϕ) → ψ.
After all, a moment ago, we showed that these two formulas are equivalent.
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Similarly, if ((ϕ ⊃ ψ) ∧ ϕ) → ψ is a logical truth, then so must be (ϕ ⊃
ψ) → (ϕ → ψ), by Import-Export.

But now, consider (ϕ ⊃ ψ) → (ϕ → ψ). Since it’s a logical truth (as we’ve
just shown), and our MP axiom tells us that indicative conditionals entail ma-
terial conditionals, it follows that (ϕ ⊃ ψ) ⊃ (ϕ → ψ) is a logical truth
as well. In other words, the material conditional ϕ ⊃ ψ entails the indicative
conditional ϕ → ψ. But then, since the MP axiom tells us things go in the op-
posite direction, too, it follows that indicatives and material conditionals are
equivalent. Q.E.D.

3. The Story so Far

Somuch for the logic of conditionals—you’ll have a chance to play with proofs
like the one above on Problem Set 3, due after the break.

After the break, we’ll be moving on to two of my favorite topics: probability
and decision theory—both areas in which I’ve done my own research.

For now, however, let’s try to get a grip on the story so far. We began this
course by thinking about set theory, as well as related concepts like functions,
and relations. We were also interested in the abstract idea of a formal system—
of which propositional logic can be viewed as a species. We heard about some
ideas having to do with the mathematics of infinity. And we then got intro-
duced to a few techniques for proving things—as well as to a few important no-
tions, like use andmention; types and tokens; and—most importantly—possible
worlds.

Even at this early stage in the course, the ideas we developed raise really in-
teresting philosophical issues. We talked about some of those already—issues
about truth and falsity or mathematical claims, for example. But believe it or
not, there are more “applied” issues, to which these topics give rise, too. Here
are some examples.

Let’s start with the use/mention distinction. This distinction turns out to be
really important in the study of slurs in natural language. In particular, some
linguists—like Luvell Anderson and Ernie Lepore—think that one of the defin-

ing features of slurs is that’s inappropriate even to mention them. Everyone
agrees, after all, that it’s offensive to use slurs in conversation. But Anderson
and Lepore argue that what makes slurs “special”, in natural language, is that
even mentioning them is ill-advised. (Whether or not you agree with that is
something that we can discuss; my point is just to show that a seemingly ab-
stract, formal distinction turns out to have important uses in linguistics—and
maybe even in ethics.)

Similarly, consider our conversation about possible worlds. Should we admit
possible worlds into our ontology? David Lewis gave a striking argument that
we should. Why? Because—he says—they turn out to be so incredibly useful
to our theorizing. This is a bit like how we admit the existence of numbers
(or other mathematical objects). Science, you might think, couldn’t be done
without admitting the existence of numbers. And Lewis thinks much the same
thing goes for, e.g., theorizing in linguistics, philosophy—even economics.The
things we take to exist are precisely the things required by our best theories.

That’s a strong argument, in my view. But maybe it rules out the existence of
things you might want to admit. Religious people might be inclined to think,
for example, that Lewis’s methodological approach to what exists there rules
out the existence of God. What do you think?

After this section of the course, we moved on to formal semantics. Formal
semantics aims to tell us how the meanings of whole sentences can be com-
puted from the meanings of the parts. The study of formal semantics begins
with Frege’s conjecture:

Frege’s Conjecture. Semantic composition is functional application.

We were then able to use this conjecture to show how, starting with a stock
of “primitive” semantic types and values, we could work our way up to more
sophisticated types and values. For example, it turned out that on this way of
thinking about things, the semantic value of a word like ‘smokes’ is a certain
function.

One interesting thing about this approach to semantics is that it’s pretty radi-
cally externalist. An externalist theory of meaning is one on which the mean-
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ings of terms in natural language are largely independent of what we think
their meanings are. As Putnam famously put it: “Meaning just ain’t in the
head”.

To illustrate, let’s consider a famous example. In the late 18th century, it was
discovered that water is H2O. The ancient Greeks certainly didn’t know that.
Nor did Isaac Newton. So, when they used the term ‘water’ (or the Greek
translation thereof), did the mean the same thing as us? The internalist says
‘No’; the externalist says ‘Yes’. What do you think?

Here’s another example. Consider a world—twin earth—where everything is
the same as it is on (actual) earth, except, instead of being made of H2O, water
is made of XYZ. Aside from that, it’s exactly the same. It looks the same; tastes
the same; people use it to wash dishes and clothes; they bathe in it; and they
keep themselves hydrated with it. When twin earthers say ‘water’ do they
mean the same thing as us?

After this part of the course, we moved on to modal logic. Modal logic, you
might think, is the logic of modal expressions—things like ‘might’, ‘possibly’,
‘necessarily’, ‘believes’, ‘ought’, and so on.

We saw that we could study all the logical uses of these modals by building a
semantics based on possible worlds and relations between them. In particular,
the accessibility relations we added to our modal models allowed us to charac-
terize different “flavors” of modality. We then saw that different constraints
we can place on accessibility relations correspond to various modal axioms.
And in turn, these give rise to various modal logics.

The ability to pin down various concepts that are of interest in philosophy
by thinking of the logic of those concepts is a really useful skill. For example,
take a concept that’s a bit of a philosophical mystery: causation. One thing
you might want to do, for example, is try to characterize the relation of cau-
sation by thinking about the logic of expressions like ‘A is a cause of B’. Is
that relation transitive? Symmetric? Reflexive? None of the answers here are
entirely obvious.

4. Where We’re Going

After the break, we’ll start thinking about probability, and then decision theory.
To start with, we’re going to think about questions like ‘What is probability?’
If you think about—and despite how ubiquitous probability is in our day-to-
day lives—it’s not at all obvious what kind of thing probability is. Indeed, all
the main theories of probability are subject to serious problems.

Nevertheless, we can develop a rich, mathematical theory of probability—a
theory which tells us that, no matter what kind of thing probability is, it has
to behave in a certain way. We’ll then think about various philosophical issues
arising from the mathematical theory of probability. For example, we’ll ask
questions like: ‘Why is it irrational to be, say, 70% confident that it will rain
tomorrow, and also 70% confident that it won’t rain?’ Why, in other words,
should our degrees of belief behave like probabilities.

Similarly, we’ll ask questions like: ‘If there are objective probabilities—what
philosophers call chances—why should be degrees of belief match them?’Why,
in other words, would it be irrational to believe that a certain coin had a 50%
chance of landing heads on the next toss, and yet, at the same time, be 70%
confident that it’ll land heads on the next toss.

Finally, we’ll think about the probabilities of conditionals. This, it turns out, is
one of the thorniest topics in philosophy—full stop!

After that, we’ll think about decision-making. We’ll see that theory of proba-
bility in part gives rise to a plausible, mathematical theory of decision-making.
And we’ll see—among other things—that the semantic theory of conditionals
we developed in the first part of the course turns out to be very important to
that theory of decision-making.
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Lecture 15: Probability I Dr. Calum McNamara

Today, we’re going to make a start on one of my favorite topics: probability
theory. Specifically, we’ll look at the mathematical foundations of probabil-
ity, and we’ll derive some useful results. Before we do that, however, we’re
going to start with a philosophical question—namely, what kind of thing is
probability?

1. Objective vs. Subjective Probability

Our use of the word ‘probability’ is ambiguous. On the one hand, it sometimes
refers to an objective quantity. When scientists say, for example, that quantum
mechanics is a probabilistic theory, they (usually) mean that nature itself is
probabilistic. It’s an objective fact that particles have probabilities of following
certain trajectories, etc.¹

On the other hand, ‘probability’ can sometimes be used to refer to something
like subjective uncertainty. When you ask me, for instance, whether the Mets
will win the World Series this year, and I respond “Probably not”, it’s plausible
that I’m expressing something like my low degree of confidence that the Mets
will win the World Series.

Philosophers usually reserve the word ‘chance’ for the objective kind of proba-
bility, and ‘credence’ for the subjective kind. There are, of course, connections
between these two kinds of probability (for instance, if you know the chance
that a certain coin will land heads, if tossed, is 50%, then it seems like your
credence that it’ll land heads, if tossed, should also be 50%). For the most part,
however, we’re going to be focused on the subjective kind of probability in
this lecture.We’ll saymore about the objective kind of probability—chance—in
subsequent lectures. (For what it’s worth, I regard the metaphysical question
of what kind of thing chance is as one of the hardest questions in metaphysics.
Almost every prima facie plausible view is open to serious objections.)

1. Of course, as a matter of interpretation, quantum mechanics (QM) is highly con-
troversial, and there are deterministic versions of this theory. I think it’s fair to say,
however, that the textbook formulation of QM is probabilistic.

2. Traditional vs. Bayesian Epistemology

The study of knowledge, as well as related concepts like belief, justification,
etc., forms a subfield of philosophy known as epistemology. Traditionally, epis-
temologists asked questions like ‘What does it take to believe/know a propo-
sition?’ For them, belief was an on/off matter—you either believed something
or you didn’t. But plausibly, this view is too coarse-grained.

Beginning in the early twentieth century, with the work of Frank Ramsey
(1903–1930), epistemologists started to work with more fine-grained notions
of belief—in particular, credence. For them, the salient questions weren’t about
what it takes to believe or disbelieve a proposition, but rather what degree of
confidence one should have in a proposition, and how these degrees of con-
fidence should hang together. Notably, for example, the laws of probability
came to be viewed as constraints on rational credences. In other words, if
you were (ideally) rational, then your subjective degrees of belief (credences)
would behave like probabilities. This approach to epistemology is known as
formal or Bayesian epistemology.²

We’ll see examples of what I mean here as we go forward. But first, let’s make
a few background assumptions crystal clear. From now on, we’ll assume that
credence (like “full belief”) is an attitude one takes towards a proposition. In
particular, we’ll assume that credence is the degree of confidence one has in a
proposition—i.e., the degree of confidence one has that the actual world is a
member of that proposition. (Recall: we’re thinking of propositions as sets of
possible worlds.) We’ll also assume that these degrees of confidence are real
numbers in the interval [0, 1]. And finally, we’ll assume that credence 1 in a
proposition A denotes full confidence in A; credence 0 in A denotes minimal
confidence in A (or full confidence in ¬A); and credence 0.5 in A means that
one is just as confident in A as one is in its negation. These assumptions seem
obvious. But they’re actually non-trivial. Note also that there’s another, closely

2. ‘Bayesian’ after the Rev. Thomas Bayes (c. 1701-1761). Why, then, is this approach
to epistemology named after Bayes? It’s tempting to think that it has something to do
with Bayes’s theorem, which we’ll encounter later today. But in fact, it’s because Bayes
was one of the first to discuss probability in terms of degrees of belief, in his letters. The
first real proponent of this view, however, was Pierre-Simon Laplace.
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related interpretation of ‘credence’ that we’ll look at in a moment—namely the
interpretation of credence as expectation of truth-value.

3. A Return to Set Theory

A moment ago I said that we’ll be assuming propositions are sets of possible
worlds. This is an idea we’ve discussed at several points in the course already.
If you’ve ever taken a statistics class, you might have heard the word ‘events’
used in place of ‘propositions’. For example, you may have heard things like
“The probability of the event that the dice lands 6 is 1/6”. Rest assured: when
statisticians say ‘event’, they’re referring to exactly the same thing that we
are when we say ‘proposition’ (interpreted as a set of possible worlds). It’s not
that we’re departing in any way from the kind of probability theory done in
other university departments.

So, with that remark having been made, let’s assume (purely for simplicity)
that there are only finitely-many possible worlds.³ We can collect these worlds
into a set, W = {w1, ..., wn}. And since propositions are just sets of possible
worlds (on our interpretation), any subset A ⊆ W is itself a proposition.

If we collect all the subsets of W into another set, we get the power set of
W , denoted P(W). This is the set of all propositions. Note that, since W
is a subset of itself, it’s a proposition.⁴ In particular, it’s the necessarily true
proposition. Conversely, the empty set,∅, is the necessarily false proposition,
that is true at no world.

Now consider two arbitrary propositions, A and B. If the intersection of A and
B is the empty set, i.e., A ∩ B = ∅, then we say that A and B are mutually
exclusive. We can interpret this as: there is no world w in W at which both

3. If we assume thatW is instead countably infinite, then nothing much changes. But
if we assume thatW is uncountably infinite, then we need to replace summations with
integrals in much of what follows. For the most part, we can ignore this complication
here. As I said, however, the only reason we assume that there are only finitely-many
possible worlds is to keep things simple, particularly the mathematics. The mathemati-
cal theory we develop below easily extends to infinite cases.
4. Why is the claim thatW is a subset of itself legitimate? It’s a good exercise to figure
out why this is, using the definition of ‘subset’.

A and B are true (or alternatively: there is no world w which is a member of
both A and B).

We need the notion of mutually exclusive sets in order to define another im-
portant notion, which will come up frequently: that of a partition. A partition,
X1, ..., Xn, is a set of subsets of W that satisfies two important properties.
First, each proposition Xi in the partition is mutually exclusive; i.e., there is
no world w in W that’s an element of both Xi and Xj (for distinct i and j).
Second, the Xi are jointly exhaustive: every world w in W is an element of
some Xi . Or, in other words, the union of all the Xis, X1 ∪ ... ∪ Xn, just is the
set of all possible worlds, W .

As an example, the set {X,¬X} is an easy example of a partition: every world
w is an element of one of X or ¬X, and no world w is an element of both.

Another important notion we’ll need is the notion of an algebra of proposi-
tions. An algebra of propositions is a set of subsets of W , F , that satisfies
three properties:

(i) F contains W ,

(ii) F is closed under complements. In otherwords, ifF contains a proposition
X, then it also contains ¬X,

(iii) F is closed under unions. So, if contains two propositions X and Y, then
it also contains their union, X ∪ Y.

Here are some examples of algebras. First, let F = {∅,W}. This algebra,
which we call the trivial algebra, satisfies the properties (i)–(iii). After all, it
satisfies (i) because it contains the trivial proposition,W . And it satisfies prop-
erty (ii), because it contains∅, which is the complement of . Finally,F satisfies
property (iii) because W and ∅ are mutually exclusive propositions, and F
contains their union: W ∪∅ = W .

A second example: the power set of W , P(W), is an algebra. It’s a good exer-
cise to verify that this is so.

As a final point before we move on, I should mention a closely related notion:
that of a σ-algebra. A σ-algebra is just like an algebra except that we extend
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the definition of property (iii), as follows. First, suppose momentarily that W
is a countably infinite set, rather than a finite one. Then:

(iii′) F is closed under countable unions. That is, if X1, X2, ... is a countably
infinite family of propositions in F , then X1 ∪ X2 ∪ ... is also in F .

Since we can safely assume, for the most part, thatW is finite in what follows,
we can stick with simple algebras rather than σ-algebras.

4. Probability Axioms

Suppose that we have some particular algebra of propositions, F . A credence
function, c is a function that takes each proposition A in the algebra F , and
maps it to a real number. Intuitively, if c is your credence function, then these
real numbers represent your degree of confidence in each proposition in F .

Formally, any credence function can represent a system of degrees of belief.
But intuitively, some credence functions are better at representing the world
than others. For example, imagine your credence function assigns the real
number .7 to the proposition that it’s raining, but also assigns .7 to the propo-
sition that it’s not raining. Intuitively, tere’s something wrong with that—but
what?

Well, to start with, those credences do not satisfy the axioms of probability.
These are:

Probability Axioms.

(1) Normality. c(W) = 1.

(2) Non-negativity. For all propositions X, c(X) ≥ 0.

(3) Additivity. If X and Y are two disjoint propositions, i.e., X & Y = ∅,
then c(X ∨ Y) = c(X) + c(Y).

If a credence function satisfies these axioms, then we call it, simply, a proba-
bility function.

A few further points about the axioms. First, you might notice that, accord-
ing to the way I defined credence functions initially, the first two axioms are

trivially satisfied. After all, I said that credences are just real numbers in the
interval [0, 1]. That’s fine; but it does show that the normative content of the
axioms is really contained all in third axiom, additivity.

Secondly, we haven’t really said anything to justify why it seems credences
should satisfy the probability axioms. In other words: What’s wrong with hav-
ing .7 credence that it will rain, but also .7 credence that it won’t? In the next
lecture, we’ll see that there are very good arguments to the effect that you
should satisfy these axioms. But for now we’ll simply take this for granted.

5. Practice with the Probability Axioms

Believe it or not, even though we’ve only got three probability axioms, almost
every truth about probability can be derived from these alone. Let’s look at
some examples of how interesting facts can be derived from these axioms.
This should give you some practice writing mathematical proofs using the
probability axioms, too.

ChallengeQuestion. Show that: c(A) + c(¬A) = 1.

Intuitively, this seems true. After all, if my credence in It’s raining is 0.7, then
it looks like I ought to have credence 0.3 in It’s not raining. And these cre-
dences sum to 1. But how are we to prove the general statement, using only
our axioms? Here’s how:

Proof. First, since A and ¬A are disjoint propositions, we know, by Axiom 3
above, that c(A) + c(¬A) = c(A ∨ ¬A). But A ∨ ¬A just is the set of all
possible worlds,W . Thus, by Axiom 1, we know that c(W) = 1. So it follows
that c(A∨¬A) = 1. But just a second ago, we showed that c(A) + c(¬A) =

c(A ∨ ¬A). So it follows from this that c(A) + c(¬A) = 1.

ChallengeQuestion For any proposition A, c(A) ≤ 1.

How do we prove this one? Consider the following:

Proof. Here, we can actually just use the fact we proved a moment ago to help
us. First, choose an arbitrary proposition A. Then, consider that, by the thing
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we proved in the first Challenge Question, c(A) + c(¬A) = 1. Now, using a
bit of algebra, it follows that c(A) = 1− c(¬A). Consequently, c(A) ≤ 1. In
particular, c(A) = 1 only if c(¬A) = 0.

Finally, consider the situation in which one proposition, A, entails another
proposition, B. In terms of possible worlds, we can think of this situation as
follows: if A entails B, then every world at which A is true is a world at which
B is true. For example, the proposition It’s raining and the coin landed heads
entails the proposition It’s raining, since every world at which the first is true
is one at which the second is true. Visually, we can think of this situation as
follows:

B A
A

What we want to prove now is the following fact.

ChallengeQuestion. Show that, if A entails B, then c(A) ≤ c(B).

I’ll leave you to prove this one on your own. (Hint: you might want to first
derive a lemma, namely that, for any A and B, c(A ∨ B) = c(A) + c(B)−
c(A ∧ B).)

6. Conditional Probability

We’re now going to introduce the notion of conditional probability: roughly,
the probability that some proposition is true, given that some other proposi-
tion is true. More precisely, we define the conditional probability of B given

that A, written ‘c(B | A)’, as follows:

c(B | A) =
c(A ∧ B)

c(A)
,

so long as c(A) > 0. Thus, conditional probability is defined as a ratio of
unconditional probabilities: in this case, the probability that A and B are both
true, divided by the probability that A is true.

There’s a nice, visual way to think about conditional probability. To see it,
consider this Venn diagram:

A B

A ∧ B

Thus, we can think of the conditional probability c(B | A) as follows: c(B | A)

is the probability that one is in the B-region, given that one is in the A-region.
It’s the proportion of the B-region that lies within the A-region.

A brief digression: some philosophers—Ramsey is one if them—think that we
should take conditional probability as primitive, and define unconditional
probability in terms of conditional probability.⁵ There are attractive reasons
to take this approach; for example, it avoids some awkwardness concerning
probability-zero events. But for now, let’s set that issue aside. We can stick
with the so-called “ratio definition” of conditional probability going forward.

5. Specifically, we can define the unconditional probability of a proposition A as the
conditional probability c(A | W)—the probability that A is true, given that the trivial
proposition is true.
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1. Expectation

Before we get started today, I want to introduce you to one last important
notion about probability. This is the notion of expectation.

Let’s start with an example—this example is actually the example that gave
rise to probability theory in the first place.

The Problem of the Points. Imagine we’re playing a game in which a fair
die is tossed. You get a point whenever the die lands on 1, 2, or 3, and I get a
point whenever it lands on 4, 5, or 6. At the moment, you have 1 point and
I have 2. The first to get three points wins a prize of $12. Just as we’re about
to roll the die for a fourth time, the game is interrupted—the police burst into
the room, and we have to scurry away. (Unlicensed gambling is illegal!) Later
on, we meet up, and the game’s arbitrator decides we’ll split the pot of money,
rather than risk being caught again.The question now is: How should we split
the pot, to make things fair?

Should I take all the money?That doesn’t seem fair—even though I was ahead,
you still had a chance of winning.

Should we split the money evenly? That doesn’t seem fair either—after all, I
had more points than you!

Challenge Question. How should we split the pot of money, so as to make
the distribution fair?

In a famous correspondence, two mathematicians—Pascal and Fermat—solved
this problem, and in turn, effectively founded probability theory. Here is how
they did so.There are three possible ways this game could end, given the point
we’ve arrived at. These are:

• The die could land on 4, 5, or 6 on the next toss, in which case I win.

• The die could land on 1, 2, or 3 on the next toss. We’d then have to roll
again, since we’d both have two points at that point in the game. It could

then land on 4, 5, or 6 on the toss after that, in which case I win again.

• The die could land on 1, 2, or 3 on the next toss, and then 1, 2, or 3 on toss
after that.

In two out of three of these scenarios, I win the pot of money, while in one of
the scenarios, you win. Notice, however, that—since the die is fair—the prob-
ability of getting a scenario of the first kind is 1/2, while the probability of
getting a scenario of the second two kinds is 1/4. Thus, Pascal and Fermat
surmised that the fair distribution here is to split the pot three-quarters/one-
quarter: I get $9, you get $3. That does, I think, seem fair.

In coming up with this solution, Pascal and Fermat effectively invented the
idea of a random variable. Formally, a random variable X : W → R is a
function, which maps worlds to real numbers—any function that maps worlds
to real numbers. Informally, however, it’s sometimes worth thinking of a ran-
dom variable as a definite description. In the case above, for example, we can
think of the relevant definite description as ‘My earnings at the end of the
game’. In that case, X maps every world of the first kind to the value 12; it
maps every world of the second kind to the value 12; and it maps every world
of the third kind to the value 0.Thus, the expected value of this random variable
is:

Ep[X] = 1/2 · 12 + 1/4 · 12 + 1/4 · 0 = 9.

(Here, ‘Ep’ is the notation we use for the expectation of a random variable X,
according to a probability function p.)

More formally, the expected value (or expectation) of a random variable X
is a probability weighted average:

Ep[X] := ∑
w

p(w) · X(w).

In this case, p(w) is the probability that world w is actual—according to some
fixed probability function—and X(w) is the value that the random variable
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X takes at w. As we’ll see in the next two parts of the course, the notion of
expectation is extremely important.

2. Dutch Books

For example, one way in which it’s important is when it comes to justifying
the interpretation of probability as a set of constraints on rational credences.
In the last class, I mentioned that this is how Bayesians think of probabil-
ity: according to them, probabilities correspond to ideally rational degrees of
belief.

That seems quite natural—it would be weird, after all, to say that the prob-
ability it will rain today is .7, but the probability that it won’t rain is also .7.
Something’s not right about that. But can we make this idea precise? In partic-
ular, can we say that having credences like those just mentioned is somehow
normatively defective.

Arguably we can. In the 1920’s, Frank Ramsey proposed an argument which
came to be known as the Dutch book argument—an argument which justifies
the idea that probabilities correspond to rational degrees of belief. In rough
terms, Ramsey’s thought was that, if you have credences that don’t satisfy the
probability axioms, then we can always cook up a set of bets, each of which
you’ll be inclined to think is acceptable, but which jointly guarantee you a sure
loss of money.

To see how this kind of argument works, let’s start by introducing some defi-
nitions, and by making an assumption. First, a unit bet on a proposition A is
a bet that pays $1 if A is true, and $0 if A is false. Formally, we can think of
a unit bet as a random vaariable: it maps a world w to 1 if the A is true at w,
and it maps a world w to 0 if A is false at w.

Now, your fair price for a unit bet on A is, we’ll assume, just your credence
in A. For example, if your credence in A is .7, then your fair price for the
bet is $0.70. Roughly speaking, the idea is that your fair price is the price at
which you’d be completely indifferent between having the bet, and having the
amount of money corresponding to your fair price: If I offered you a choice
between $0.70 and a unit bet on A, then you’ll be indifferent between the

two options iff 0.70 is your fair price—viz., iff .7 is your credence in A. At
any price lower than $0.70, you’ll think having the bet is better; and at any
price higher than that, you’ll think having the money is better. (Of course, all
this involves significant idealization. Maybe you’re risk-averse, etc.—in real
life, people often are. There are ways to handle that kind of thing; but we’re
simplifying things dramatically, and assuming risk-aversion, etc., away.)

Now, consider again the case in which someone has .7 credence in a proposi-
tion A, and .7 credence in a proposition ¬A. Then, here is how we can con-
struct a Dutch book argument against them.

• We offer them a bet on A, for a price of $0.70. Since their credence in A is
.7, the price for the bet is also their fair price, and they should find the bet
acceptable—at the very least, they don’t find it unacceptable.

• Likewise, we offer them a bet on ¬A for a price of $0.70. Since their cre-
dence in ¬A is .7, the price for the bet is their fair price, and they should
find this bet acceptable, too.

• By taking both bets, however, they’ll have paid $1.40 in total.

• But the most they stand to win from these bets is $1, since if A is true, ¬A
is false, and vice versa.

• The upshot is that, by taking these bets, they’re guaranteed to lose $.40, no
matter which of A or ¬A is true. In other words, they’re guaranteed a sure
loss of money.

More generally, Ramsey was able to prove a theorem which says that, if you
violate any of the probability axioms, then we can always propose you a set of
bets like the one above. (Sometimes, we’ll offer to sell you the bets; sometimes,
we’ll offer to buy them from you. But the point remains: if you violate proba-
bility axioms, you’re Dutch-bookable.) Thus, since (we assume) having money
is something you value, the argument is supposed to show that probabilistic
incoherence—violating the probability axioms—results in “giving away” some-
thing you value, with no possible compensatory gain.

Let me pre-empt and objection here. You might think the Dutch book argu-
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ment doesn’t show very much. After all, in some sense, it depends on the
existence of a bookie—someone who can buy or sell the relevant bets—and
who knows your fair prices. But maybe the existence of such a bookie is an
unrealistic assumption.

That, however, is the wrong way to think about the argument. Here is how
(our hero!) David Lewis (1999) describes things:

[T]he point [of a Dutch book argument is to show] that if you are vul-
nerable to a Dutch book… that means that you have two contradictory
opinions about the expected value of the very same transaction. To hold
contradictory opinions may or may not be risky, but it is in any case
irrational. (p. 405, emphasis added)

Note: look out for questions about Dutch books on the upcoming problem set!

3. Accuracy

Thus, the Dutch book argument provides a compelling justification for the
Bayesian claim that the probability axioms are normative, in the sense that, if
you’re rational, then your degrees of belief will satisfy them.

Nevertheless, there’s another kind of complaint we can make against this
argument—a different complaint to the one just sketched. Here is how Jim
Joyce (1999)—my advisor!—describes things:

[W]hen called upon to defend the claim that rational degrees of belief
must obey the laws of probability [Bayesians] generally present some
version of the Dutch Book Argument… which establishes conformity
to the laws of probability as a norm of prudential rationality by show-
ing that expected utility maximizers whose partial beliefs violate these
laws can be induced to behave in ways that are sure to leave them less
well off than they could otherwise be. This overemphasis on the prag-
matic dimension of partial beliefs tends to obscure the fact that they have
properties that can be understood independently of their role in the pro-
duction of action. Indeed, [Bayesians] have tended to pay little heed to
the one aspect of partial beliefs that would be of most interest to epis-
temologists: namely, their role in representing the world’s state. My

strong hunch is that this neglect is a large part of what has led so many
epistemologists to relegate partial beliefs to a second-class status.

(When Joycewaswriting this, in 1998, Bayesian epistemology hadn’t yet really
taken off—hence, the last sentence in the above quotation. Now, however—
and thanks almost entirely to Joyce’s paper—that’s no longer true. Bayesian
epistemology is at least as prominent as “traditional” epistemology.) In short,
then, Joyce’s complaint is that the Dutch book argument shows that violating
the probability axioms is practically defective. But, as epistemologists, it would
be nice if we could show that it was somehow also epistemologically defective,
too.

Joyce himself gives an argument to this effect, inspired by earlier work of the
statistician De Finetti. One of the beautiful things about Joyce’s argument is
that it lends itself to a lovely geometric interpretation: we can draw pictures
to show why it has to be true.

To do so, however, we have to start by showing how we can represent pos-
sible worlds geometrically. Thus, start with the simplest case, in which we’re
interested in a proposition A and its negation, ¬A. We can represent these
worlds as points in the plane: let w1—the world at which A is true—be the
point (1, 0), and let w2, the world at which ¬A is true be the point (0, 1):

x

y

w1

w2

(For the mathematically inclined, we can think of worlds as vectors, with each
component of the vector being the truth value assigned to a given proposition.)
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Now, consider the set of all probability functions defined over the set {A,¬A}.
(This isn’t an algebra—but we’ll ignore the other elements needed to form an
algebra, W , ∅, for simplicity.) Any probability function defined on {A,¬A}
can be expressed as a weighted average of the truth-values of A and ¬A. If
vwi (A) is the truth value of A at wi , then every probability function can be
expressed in the form:

p(A) := λ · vw1(A) + (1 − λ) · vw2(A).

Geometrically, what this means is that the set of all probability functions on
{A,¬A} is really just the straight line that runs between (1, 0) and (0, 1).

For example, in the figure below, the point labeled ‘c∗’ on the line corresponds
to a probability function that assigns .6 to A and .4 to ¬A.

But now consider the point not on the line, labelled ‘c’. This corresponds to
a credence function that violates the probability axioms—it assigns credence
.7 to A, but credence .5 to ¬A (and this doesn’t sum to 1). But notice: by

Pythagoras’s theorem, the point labelled ‘c’ is further from w1 than c∗ is; and
it’s further from w2 than c∗ is, too. Thus, no matter which of w1 or w2 is
actual—viz., no matter which of A or ¬A is true—c is “further from the truth”
than the function c∗.

Of course, this geometric result is only metaphorical. It helps us to get at the
core of Joyce’s argument. But in order to prove the argument formally, Joyce
introduces a class of functions—so-called inaccuracy measures—which mea-
sure a credence function’s (in)accuracy at a possible world. One famous exam-
ple of such a function is called the Brier score. It says that the inaccuracy of a
credence function c at a world w is defined like this:

I(c, w) := ∑
i
(c(Ai)− vw(Ai))

2.

(Note that we can think of I(c, w) as a random variable!) He’s then able to
prove the following, beautiful result, which generalizes the geometric argu-
ment we just saw.

First, some terminology:

Weak Accuracy-dominance A credence function c is said to weakly
accuracy-dominate another credence function, c′, relative to the inaccu-
racy measure I, just in case, I(c, w) ≤ I(c′, w) for all w ∈ W , and for
some w ∈ W , I(c, w) < I(c′, w).

Strict Accuracy-dominance A credence function c is said to strictly
accuracy-dominate another credence function, c′, relative to the inaccuracy
measure I, just in case, I(c, w) < I(c′, w) for all w ∈ W .

Theorem 1. Let F be an algebra of propositions, I an inaccuracy measure,
and c a credence function defined on F . Then the following are equivalent:

(i) c is not weakly accuracy-dominated.

(ii) c is not strictly accuracy-dominated.

(iii) c satisfies the probability axioms.
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PHIL 210/510: Formal Methods Yale, Spring 2025
Lecture 15: Conditionalization, Chance Dr. Calum McNamara

1. Conditionalization and Bayes’ Rule

Two sessions ago, I briefly mentioned that Bayesianism can be characterized
by three core commitments. The first is descriptive. And the second two are
normative. They are:

(1) Gradationality. Our Beliefs come in degrees; they’re not just on/off.
(That’s the descriptive claim.)

(2) Probabilism. Rational degrees of belief, at a given time, obey the proba-
bility axioms.

(3) Conditionalization. When you learn the truth of a proposition, A, you
should change your credences by the rule known as conditionalization.

Conditionalization is a diachronic norm on rational credences. That is, it de-
scribes a relationship between your credences at different times. (In contrast,
probabilism is a synchronic norm on rational credences. It describes how
your credences should hang together at a particular time.)

Here is the rule of conditionalization, which you’ve already seen:

Conditionalization. Let c be your credence function before a learn-
ing event (your prior credence function); and let cA be your credence
function after learning A, and nothing stronger (your posterior cre-
dence function). Then, your new credence in any proposition B should
be:

cA(B) = c(B | A) :
c(A ∧ B)

c(A)
,

provided c(A) > 0.

Notice a few things about conditionalization. First, focus on the ratio definition
of conditional probability:

c(B | A) =
c(A ∧ B)

c(A)
.

Now, if we multiply both sides by c(A), then we get:

c(B | A) · c(A) =
c(A ∧ B)

c(A)
· c(A) = c(A ∧ B).

Thus, what we’ve just derived is that c(A ∧ B) = c(B | A) · c(A). Of course,
using an exactly parallel argument, we can derive that c(A ∧ B) = c(A |
B) · c(B). This allows us to write conditionalization in a slightly different way:

Bayes’ Rule. Let c be your credence function before a learning event
(your prior credence function); and let cA be your credence function
after learning A, and nothing stronger (your posterior credence func-
tion). Then, your new credence in any proposition B should be:

cA(B) = c(B | A) =
c(A | B) · c(B)

c(A)
,

provided c(A) > 0.

The Bayes’ rule version of conditionalization is really useful, in practice.Why?
Well, imagine you’re trying to compute the probability that some hypothesis is
true, given that you’ve observed some evidence, for or against it. Then, Bayes’
rule tells you how probable the hypothesis is, given the evidence, as a func-
tion of your prior credences about the probability of the evidence, given the
hypothesis.

2. Total Probability/Jeffrey Conditionalization

To see more precisely how this works, let’s introduce an important law of
probability—the so-called law of total probability. There are two different
ways we can write this.

First, imagine that you have a partition of propositions. (Remember: this is a
set of propositions that’s mutually exclusive and jointly exhaustive.) Let this
partition be A1, ..., An. Then the probability of any proposition B is:

c(B) = ∑
i

c(Ai ∩ B).
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Then, given what we showed above, about the probability of a conjunction,
this can be written alternatively as:

c(B) = ∑
i

c(B | Ai) · c(Ai).

So: the probability of B (for any B), is the sum over the probabilities that B is
true, given that each Ai is true, then weighted by your credence that Ai itself
is true.

Why is this useful with respect to Bayes’ rule/conditionalization? Well, be-
cause it allows us to write Bayes’ rule yet another way:

c(B | A) =
c(A | B) · c(B)

c(A | B) · c(B) + c(A | ¬B) · c(¬B)
.

And this is probably the most useful version of the rule when it comes to
applying Bayes’ rule.

Challenge Question. Imagine you’re entertaining two hypotheses about a
coin—namely, that it’s fair (H) and that it’s biased 75% towards heads (¬H).
You’ve flipped the coin once, and observed it land on heads. What’s the prob-
ability that the coin is fair, given that you’ve made this observation. Imagine
you start fifty/fifty between the two hypotheses.

Incidentally, the law of total probability allows us to state a generalization
of conditionalization, too. To see what it is, first notice something important
about conditionalization—it tells you how to change your credences when
you learn a proposition with certainty. Arguably, however, there are very few
learning experienceswherewe become completely certain of the truth of some
proposition. For example, suppose I tell you that a certain die landed on an
even number. Do you thereby become certain that it landed on 2, 4, or 6? In
some cases, the answer is ‘Plausibly not’. After all, maybe you think I have
bad eyesight, or can’t remember what an even number is, etc. In such cases,
conditionalization seems to fall silent. And yet—given that you think I’m not
completely unreliable in my report—it still seems like my telling you the die

landed even should at least cause you to raise your credence that it did so.

The great Bayesian philosopher Richard Jeffrey noticed this, and proposed the
following generalization of conditionalization, to handle these kinds of cases.
Imagine A1, ..., An is again a partition of propositions, and you have a learn-
ing experience which causes your credences in the Ai to shift from c(Ai) to
c∗(Ai). Then:

Jeffrey Conditionalization.¹ After a learning experience of the kind
described, your new credence in any proposition B should be:

c∗(B) = ∑
i

c(B | Ai) · c∗(Ai).

So, your new credence in any propositition B is equal to the sum of your old
conditional credence in B given Ai , weighted by your new credence in Ai . In
effect, this just is the law of total probability. Notice that conditionalization
is just the special case of Jeffrey conditionalization in which some partition
element Ai gets the new probability c∗(Ai) = 1.

Notice also two other things about the update rules we’ve looked at. First,
in order for the rules to work, it needs to be that learning experiences don’t
affect your conditional credences. (This is called the rigidity property.) Is this
plausible?

Additionally, notice that, in the case of both conditionalization and Jeffrey con-
ditionalization, the evidence youmight learn forms a partition. Is this plausible
in all cases?

If you answered ‘Yes’ to the latter, then momentarily think back to the third
problem set, where I asked you if the following three conditions on evidence
are plausible.

• Factivity. If ϕ is part of your evidence, then ϕ is true.

1. Jeffrey himself called this rule probability kinematics.
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• Positive Introspection. If ϕ is part of your evidence, then it’s part of your
evidence that ϕ is part of your evidence.

• Negative Introspection. If ϕ is not part of your evidence, then it’s part
of your evidence that ϕ is not part of your evidence.

As it happens, these three conditions are what we need to guarantee that evi-
dence forms a partition. But maybe you didn’t think they were all plausible…

3. Chance

Let’s now change gears. So far in this unit, we’ve been focused on the sub-
jective interpretation of probability—viz., as rational credence. We also
said, however, that there’s an objective interpretation of probability, which
philosophers refer to as chance. What, then, is chance? And how does it relate
to rational credence?

Clearly, there has to be some relation between chance and rational credence.
For example, imagine you knew that the chance a certain could would land
heads, if tossed, was .5. But suppose also that your rational credence that it’d
land heads, if tossed, was only .25. There’s something very weird about this—
prima facie, it seems like your credences should match the chances.

Indeed, David Lewis (again!) thought that—whatever kind of thing chance is—
it has to be something that guides credence. As he himself put it: “Don’t call
any alleged feature of reality ‘chance’ until you’ve shown that you have some-
thing, knowledge of which could constrain rational credence”. Thus, let’s now
try to spell out this idea more precisely. To do so, we’ll need to introduce a bit
notation.

Let W = {w1, ..., wn} be the set of all possible worlds (To keep the math
simple, we’re pretending there are only finitely many worlds.) Now, for each
possible world, w, let chw,t be the chance function at time t. Intuitively, this
function is a probability function which gives the chance of any proposition
A, at w, and at time t.

Now, let Ch be a definite description for ‘the objective chances at time t’. For-
mally, Ch is a function that takes any possible world, w, and maps it the func-

tion chw,t. Given this function, we can form a proposition—namely, the proposi-
tion that the chances at t are given by the function chw,t. To do this, we collect
together all the worlds w, at which the t-chances are given by that function:

⟨Ch = cht⟩ = {w ∈ W : Ch = chw,t}.

Now we can state a first-pass-principle, saying how chance should contain
credence.

Miller’s Principle. For any proposition A:

c(A | ⟨Ch = cht⟩) = chw,t(A).

Intuitively, here’s what this principle says: conditional on the proposition that
the t-chances are given by the function chw,t, your credence in any proposition
A should match the chance of A, according to chw,t. Or, to frame things in
terms of conditionalization: if you were to learn the proposition ⟨Ch = cht⟩,
then your credences should match the chances, according to chw,t.

This principle is a good start; but it can’t possibly be right.Why?Well, imagine
that c is your current credence function; imagine that Ch = cht is the propo-
sition that the chances yesterday at noon were given by the function chw,t;
and imagine that at midnight you saw a certain coin land heads—let A be the
proposition that it did so. Then, chances yesterday at noon might say that A
has chance .5; but since you saw the coin land heads, your credence that it did
so should be 1!

Faced with cases like this one, David Lewis famously argued for a version of
the principle above, that doesn’t commit us to weird upshots like this one. To
state it, let’s first introduce a definition: let c0 be your ur-prior credence func-
tion—i.e., the credence function you have before you’ve received any evidence
at all (in life!). Let E be some evidence. And let’s assume that you update your
credences by conditionalization. Then, if you were to learn E at the beginning
of your epistemic life, your new credence in any A is: cE(A) = c0(A | E).
Now we can state Lewis’s principle, about chance and rational credence:
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Principal Principle. Let c0 be an ur-prior credence function, let A be
any proposition, let E be an evidence proposition, and let ⟨Ch = cht⟩
be the proposition that the t-chances are given by the function chw,t.
Then, if E is admissible with respect to ⟨Ch = cht⟩, we have: c0(A |
E ∧ ⟨Ch = cht⟩) = chw,t(A).

The “admissibility” clause here is crucial. What is an admissible piece of evi-
dence? As Lewis thinks of it, it’s a piece of evidence that doesn’t itself contain
any information about the present chances. For example, imagine that you
look into a crystal ball, and see the coin land heads tomorrow.Then, this piece
of information is inadmssible with respect to the chance of the coin landing
heads tomorrow. In contrast, if E is the proposition that you had corn flakes
for breakfast yesterday, then this is perfectly admissible.

4. The Big Bad Bug

Lewis called the principle above the Principal Principle because, as he put it, it
tells us everything we know about the concept of objective chance. What kind
of thing could chance be, in other words, unless it wassomething such that, if
you knew it, it would guide your (rational) credences?That seems right, if you
think about it.

This is an important part of Lewis’s philosophical methodology: if you want
to know what something is, then it’s a good idea to start by asking ‘Well,
what kind of role does that thing play in our lives?’ That said, Lewis also had
a grand, metaphysical vision about how the world works known as Humean
Supervenience. It’d take a whole class to explain exactly what this vision is. But
here is how Lewis describes it, in a beautiful (and famous!) passage:

Humean supervenience is named in honor of the great denier of nec-
essary connections. It is the doctrine that all there is to the world is a
vast mosaic of local matters of particular fact, just one little thing and
then another… We have geometry: a system of external relations of
spatio-temporal distances between points. Maybe points of spacetime
itself; maybe point-sized bits of matter or aether of fields; maybe both.
And at those points we have local qualities: perfectly natural intrinsic
properties which need nothing bigger than a point at which to be in-

stantiated. For short, we have an arrangement of qualities. And that
is all. There is no difference without difference in the arrangement of
qualities. All else supervenes on that.

The idea, then, is that “nomic concepts”—like chance, laws of nature, etc.—
all “supervene” on the arrangement of matter, past, present, and future. For
example, in the case of chance, Lewis’s view is (very roughly!) a frequentist
one: we say that a certain coin has a 50% chance of landing heads because, of
all the times the coin is ever flipped, 50% of those flips come up heads—the
chances supervene on the “categorical” facts about how the coin lands.

Sadly, this view about chance turns out to be inconsistent with Lewis’s own
Principal Principle—a fact Lewis himself was well aware of. Lewis spent more
than a decade trying to come up with a solution to this problem. But it’s not
at all clear that he succeeded. Indeed, the search continues for many people—
they want to find a principle like the Principal Principle that isn’t inconsistent
with Humean Supervenience. Maybe you can think of one…

5. Generalizing the Principal Principle

One last thing. You’ll notice that, although when we stated the Principal Prin-
ciple (or Miller’s Principle), the proposition ⟨Ch = cht⟩ referred to a chance
function, nothing really commits us to this interpretation. Abstractly, a prin-
ciple like the Principal Principle just says you should defer to a certain proba-
bility function. And we can interpret this function in different ways.

For example, here’s another interpretation.The philosopher of science Bas van
Fraassen gave the following principle:

Reflection. Let p be your prior credence function, and let ⟨P = p∗⟩
be the proposition that your future credences are given by the function
p. Then, for any A:

p(A | ⟨P = p∗⟩) = p∗(A).

If you know your future credence in A is going to be p∗(A), then you
should have that credence right now.
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Lecture 18: Probabilities of Conditionals Dr. Calum McNamara

1. Left-overs: Generalizing the Principal Principle

Last time, we discussed Lewis’s Principal Principle. You’ll notice that, although
when we stated the Principal Principle (or Miller’s Principle), the proposition
⟨Ch = cht⟩ referred to a chance function, nothing really commits us to this
interpretation. Abstractly, a principle like the Principal Principle just says you
should defer to a certain probability function. And we can interpret this func-
tion in different ways.

For example, here’s another interpretation.The philosopher of science Bas van
Fraassen gave the following principle:

Reflection. Let p be your prior credence function, and let ⟨P = p∗⟩
be the proposition that your future credences are given by the function
p. Then, for any A:

p(A | ⟨P = p∗⟩) = p∗(A).

If you know your future credence in A is going to be p∗(A), then you
should have that credence right now.

Notice that, if for each value p∗ might take, we have p(A | P = p∗i ), for
i = 1, ..., n, then, using the law of total probability, we can re-state Reflection
equivalently:

p(A) = ∑
i

p(P = p∗i ) · p∗i (A).

Thus, in effect, Reflection says that your current credences should be your
expectation of your future credences. That seems completely right. (For those
of you with some familiarity with probability theory, effectively, Reflection
tells you that updating should form a martingale process.)

ChallengeQuestion. If we assume your evidence forms a partition, then we

can prove that the “expectational formulation” of Reflection is equivalent to
the claim that you should udpate by Conditionalization. Can you prove this?

The general point we want to take away from this is that, really, the Principal
Principle and Reflection are part of a very large class of principles, called expert
deference principles.

2. Probabilistic Independence

Anyway, let’s now turn to today’s topic. In order to get to today’s key results,
I need to introduce you to one more concept from probability theory—the
concept of independence.

Intuitively, two propositions are probabilistically independent just in case
learning that the one is true gives you no evidence about the probability of
the other. For example, intuitively, learning that a die was rolled and landed
on an even number is probabilistically independent of whether the Mets will
win the World Series this year.

Formally, we can define probabilistic independence in terms of conditional
probabilities. Two propositions A and B are independent just in case:

p(B | A) = p(B).

So, A and B are independent just in case the probability of B, conditional on
A is the same as the probability of B alone.

You may have also seen the following definition of independence:

p(A ∧ B) = p(A) · p(B).

(In words: the probability of A and B is the product of the probability of A
and the probability of B.) On the latest problem set, you’re asked to derive this
definition from the previous one. Good luck!

3. Probabilities of Conditionals

We can now finally turn to today’s main topic—probabilities of conditionals.
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In particular, what we’re going to think about are the probabilities of indica-
tive and subjunctive conditionals. Since—at least on the semantic views we’ve
explored—these are propositions, they should have well-defined probabilities.
And indeed, people have very strong intuitive ideas about what these proba-
bilities should be.

Let’s start with an example. Suppose I’m about to roll a fair, six-sided die, and
I say:

(1) If the die lands on an even number, then it will land on 2.

How confident should you be of this sentence? Here, almost everyone says
your credence should be 1/3. Why’s that? Well, plausibly because 1/3 is also
the conditional probability of getting a 2, given that I roll an even number.

Intuitions like this are surprisingly robust. (In fact, there have been empiri-
cal studies, which show that intuitions like the one just mentioned are very
widespread indeed.) For example, consider yet another sentence:

(2) If I flip this fair coin, then it’ll land on heads.

How confident are you of that sentence? Intuitively, the answer is 1/2. And
once again, that’s just the conditional probability of getting a heads, given that
the coin is flipped.

Intuitions like these motivate a general principle, about the probabilities of
conditionals. It was first introduced by Stalnaker (1970), from whom we get
the name:¹

Stalnaker’sThesis. Let A → B be an indicative conditional, and let p
be a rational credence function. Then:

p(A → B) = p(B | A),

1. Stalnaker’s thesis sometimes goes by other names in the literature: ‘the thesis’, ‘the
equation’, and sometimes ‘Adams thesis’. (For what it’s worth, I think the latter is a
misnomer—but I won’t get into the reasons for that.)

provided this is well-defined.

So, Stalnaker’s Thesis says: in general your credence in an indicative condi-
tional A → B should match your conditional credence in its consequent,
given its antecedent.

There’s a corresponding principle for subjunctive credences. To get a feel for
it, suppose I say the following: ‘Yesterday at noon, I didn’t flip this fair coin.
But:

(3) If I had flipped the coin, it would’ve landed heads.’

This sounds quite a lot like Stalnaker’s Thesis. But we clearly can’t have that
your credence in the subjunctive matches your conditional credence in the
antecedent, given the consequent. That won’t work because you give the an-
tecedent credence 0. Thus, the corresponding principle is this (named after
Skyrms (1980)):

Skyrms’s Thesis. Let A □→B be a subjunctive conditional, and let p
be a rational credence function. Then:

p(A → B) = cht(B | A),

where cht gives the chances just before the antecedent takes place (and
provided this is well-defined).

So, Skyrms’s Thesis says: your credence in a subjunctive conditional should
match the conditional chance, at a relevant time, of the consequent given the
antecedent. Intuitively, that also seems right.

4. Lewisian Triviality

Both Stalnaker’s Thesis and Skyrms’s Thesis seem intuitively compelling. In-
deed, some philosophers have regarded them as obvious—barely even in need
of justification.

In his 1976, however, David Lewis showed that Stalnaker’sThesis in particular
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faces very serious challenges. (It’s easy to extend Lewis’s result to Skyrms’s
Thesis, and we’ll do so in a moment.) Indeed, the philosopher Branden Fitelson
once told me that, historically speaking, Lewis’s results were so damning, that
they effectively brought an end to the study of the probabilities of conditionals
for almost 40 years.

To see how Lewis’s results work, we only need three assumptions. The first is
that you satisfy the probability axioms; the second is that you update your
credences by conditionalization. (Those are the standard Bayesian assump-
tions, so they’re hardly worth questioning. We’ll assume them henceforth.)
The third assumption is that Stalnaker’s Thesis should hold for all rational
credence functions—since the thesis is supposed to be a normative thesis, that
also seems right.

Now consider the following. Choose some particular A → B. Then:²

p(B | A) = p(A → B) (ST)
= p(A → B | B) · p(B) + p(A → B | ¬B) · p(¬B) (Total)
= pB(A → B) · p(B) + p¬B(A → B) · p(¬B) (Cond)
= pB(B | A) · p(B) + p¬B(B | A) · p(¬B) (ST)
= p(B | A ∧ B) · p(B) + p(B | A ∧ ¬B) · p(¬B) (Cond)
= 1 · p(B) + 0 · p(¬B) (Ratio)
= p(B)

So, what we’ve established, then, is that, if Stalnaker’s Thesis holds for all ra-
tional credence functions, then A and B must be probabilistically independent:
p(B | A) = p(B). And that’s the case for any A and B. But of course, that’s
absurd! In fact, Lewis himself shows that this can hold only if every rational
credence function gives positive probability to only two possible worlds!

Anotherway to see the absurdity is the following. Consider: ‘If the die lands on
an even number, then it’ll land on 2’ and ‘The die lands on 2’. Intuitively, your

2. In this derivation, I use the following shorthands: ‘ST’ stands for ‘Stalnaker’s The-
sis’, ‘Total’ stands for ‘Law of Total Probability’, ‘Cond’ stands for ‘Conditionalization’,
‘Ratio’ stands for ‘Ratio formula for conditional probability’.

credence in the former should be 1/3 (as we said above), and your credence
in the latter should be 1/6. But Lewis’s results imply that you must assign
these sentences exactly the same credence. And that goes for any indicative
conditional you can think of.

We can extend arguments like Lewis’s to Skyrms’s Thesis. To do so, we only
need one extra assumption—namely, that you should satisfy the Principal Prin-
ciple. Then we have:

ch(B | A) = p(A → B) (Skyrms)
= ch(A → B) (Principal Principle)
= ch(A → B | B) · ch(B) + ch(A → B | ¬B) · ch(¬B) (Total)
= chB(A → B) · p(B) + ch¬B(A → B) · ch(¬B) (Cond)
= chB(B | A) · p(B) + ch¬B(B | A) · ch(¬B) (Skyrms)
= ch(B | A ∧ B) · ch(B) + ch(B | A ∧ ¬B) · ch(¬B) (Cond)
= 1 · ch(B) + 0 · ch(¬B) (Ratio)
= ch(B)

This result was first proved by Robbie Williams (2012). (Although “proved” is
a bit of a stretch here—the result is really just a straightforward corollary of
Lewis’s results.) It shows that, if Skyrms’s Thesis holds, then for any A and
B, the chances of A and B must be probabilistically independent. But again,
that’s absurd.

Results like these are often known as triviality results, because they show, not
that something like Stalnaker’s Thesis is inconsistent—in the sense of being
logically contradictory—but because they show that it can hold only in “triv-
ial” cases. Again: the triviality here results because, if Stalnaker’s Thesis is
completely right—then there are only two epistemically possible worlds. And
that’s obviously false.

5. More on Triviality

One of the amazing things about Lewis’s triviality results is that they’re ac-
tually very simple. They make use only of tools from Bayesian epistemology
and probability theory that you’ve learned in the last twoweeks. Nevertheless,
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they show something extremely surprising. (By the way, for anyone who’s
worried about using formal tools in their own work, Lewis’s results should
quell your fears: you don’t need that muchmathematical background to prove
things that are extremely deep, surprising, and beautiful.)

Nevertheless—like all mathematical results—Lewis’s triviality results rely on
some assumptions. One of them, for example, is that Stalnaker’sThesis should
hold for all credence functions in a class of credence functions “closed” under
conditionalization. But maybe that’s not right—maybe we should think that
conditionalization isn’t always the right way to revise your credences. (Inci-
dentally, in 1986, Lewis proved that the result still goes through if you assume
the class of rational credence functions is closed under Jeffrey conditionaliza-
tion.)

If we reject this assumption, then, maybe Lewis’s triviality results are not so
worrying. Not so fast! Since Lewis’s original paper, philosophers (and mathe-
maticians) have showed that you can prove results like Lewis’s in lots of dif-
ferent ways, using lots of different assumptions.The triviality results, it seems,
are very difficult to escape.

For example, consider a result proved by our friend Alan Hájek (1989) (in
his PhD dissertation). In Lewis’s result, the quantification is over probability
functions: suppose all rational credence functions satisfy Stalnaker’s Thesis. In
Hájek’s case, in contrast, the quantification goes over indicative conditionals
themselves: A → B. What he shows is that, in any model with countably
many worlds, we cannot generally find a probability function p such that, for
all propositions A → B, p(A → B) = p(B | A).

Hájek’s result is quite mathematically sophisticated. (Hájek himself had train-
ing as a statistician, before he turned to philosophy.) But we can illustrate his
result with a very simple example. Thus, let W = {w1, ..., w6} be a set of six
worlds, where each world wi corresponds to a world where a certain fair die
lands on i, after 1 toss. So: w1 is the world where the die lands on 1; w2 is
the world where the die lands on 2; etc. Now, since the die is fair, suppose
you give equal credence to each of the worlds w1, ..., w6, so p(wi) = 1/6, for
i = 1, ...6. Next, consider the following:

(4) If the die doesn’t land on 1, it will land on 2.

What’s your credence in this sentence? Stalnaker’s Thesis tells us it should be
1/5, since that’s the probability of the consequent, given the antecedent. But
notice that there can be no proposition—i.e., subset of the worlds w1, ..., w6—
whose credence in 1/5 in this case. After all, since you give probability 1/6 to
eachworld wi , any set of these worldsmust credence equal to somemultiple of
1/6. And no multiple of 1/6 is equal to 1/5! So, with respect to the sentence
just above, Stalnaker’s Thesis must be wrong.

Effectively, what Hájek’s result shows is that, for any model with (only) count-
ably many worlds, we can always construct examples like this one, given the
choice of a probability function. We thus have another reason to doubt Stal-
naker’s Thesis.

6. Reactions

Lewis’s triviality results show, very clearly, that some of our cherished as-
sumptions about indicative conditionals have to go. Maybe, for example, we
have to jettison our intuitions about the probabilities of conditionals; ormaybe
we have to go for something even more radical.

One extreme reaction, for instance, is noted by philosophers like Dorothy Edg-
ington (1995). Edgington—and these days, many others—think that the trivial-
ity results should lead us to question whether conditionals are really proposi-
tions at all. Edgington thinks instead that conditionals are merely “expressive”
of our conditional credences—they don’t in other words, have truth conditions.
That’s a hard view to maintain for a number of reasons—but not an uncom-
mon one. (For example, if Edgington is right, then how can it make sense to
say things like ‘The die landed even, and if the coinwas flipped it landed heads’.
According to Edgington, that sentence is a conjunction of a proposition and a
non-proposition. What⁈)

More recently, there’s been amovementwhich says that we can get around the
triviality results by embracing a contextualist view about conditionals. (Indeed,
I myself have contributed to this literature.) Using this view to combat the
triviality results isn’t as straightforward as it might seem, however…
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By this point in the course, you’re well acquainted with the Bayesian view in
epistemology. As we heard, Bayesians think that beliefs are degreed attitudes,
called credences; and if you’re rational, these credences obey the probability
axioms.

This is a standalone view. But historically, it grew out of attempts to describe
betting behavior. Indeed, we saw an example of this in our first session on
probability—namely, the problem of the points. Andwe also saw that one promi-
nent attempt to justify the Bayesian view appeals to betting behavior too (viz.,
the Dutch book argument).

So, historically, there’s been a close connection between the Bayesian view of
rational belief, and betting behavior. More broadly, there’s been a close connec-
tion, historically speaking, between the Bayesian view, and theories of rational
action.

Today, we’re going to start thinking about rational decision-making. Andwe’ll
see that the Bayesian view plays an important role in this discussion.

1. Expected Utility Theory

Recall our notion of an expectation. The expectation of a random variable X
is a probability-weighted average of X’s possible values:

Ep[X] = ∑
w

p(w) · X(w).

As an example, let’s calculate an expectation:

Challenge Question. Let X be a random variable corresponding to the defi-
nite description, ‘The outcome of a fair die roll’. X’s possible values are 1, ..., 6,
and the probability of each outcome is 1/6. What is the expected value of X?

We can use this idea of the expectation of a random variable to say how you
should choose between different options.

To see how, imagine you have a (finite) collection of options O1, ..., On. Intu-
itively, you can think of the Oi as standing for different actions that you can
perform, or different strategies that you might take. Collectively, the collec-
tion of the Oi , written ‘O’, is called your decision problem. In the context
of EU theory, we can think of options as functions (random variables) from
worlds to real numbers. The real number outputted by a random variable O,
when given w as an argument, O(w), is the amount utility you’d receive by
choosing O at w.

Now, the orthodox theory of rational decision-making is expected utility
theory (or ‘EU theory’). It says that when you’re choosing from among a
collection of options, you should choose the optionO that maximizes expected
utility, defined as follows:

EU(O) = ∑
w

p(w) · O(w).

Thus, you should choose the option that you expect to have the best results.
(Notice that the right-hand side is just your expectation of a random variable.
So EU theory says that you should choose the random variable that does best,
in expectation.)

Let’s look at an example. Suppose you can choose weighted to take a certain
bet, O1, or decline it, O2. The bet pays $1 if a fair coin lands heads, but loses $2
if the coin lands tails. Assuming you value dollars linearly, with the obvious
choice of units—a point we’ll return to below—what option should you choose
here.
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Well, we have:

EU(O1) = ∑
w∈H

p(w) · O1(w) + ∑
w∈¬H

p(w) · O1(w)

= .5 · 1 + .5 · −2
= −.5

And:

EU(O2) = ∑
w∈H

p(w) · O2(w) + ∑
w∈¬H

p(w) · O2(w)

= .5 · 0 + .5 · 0
= 0

So you should choose the second option, to decline.

3. Justifying EUTheory: Long-run Arguments

EU maximization sounds sensible. But what we’d really like is some more for-
mal way to justify it. How, then, can we do so?

One reason for maximizing EU is that it makes for good policy in the long run.
To see this, we need to sketch two mathematical facts about probabilities: the
strong law of large numbers, and the weak laws of large numbers. Both these
facts concern sequences of independent, identically distributed trials—the sort
of setup that results from repeatedly betting the same way on a sequence of
coin tosses, for example. Both the weak and strong laws of large numbers say,
roughly, that over the long run, the average amount of utility gained per trial
is overwhelmingly likely to be “close” to the expected value of an individual
trial.

More precisely: theweak law of large numbers states that, where each trial
has an expected value of x, for any arbitrarily small real numbers ϵ > 0 and
δ > 0, there is some finite number of trials n, such that for all m greater than
or equal to n, with probability at least 1δ, your average payoff for the first m

trials will fall within ϵ of x. In other words, if youwere to repeat some decision
problem over and over and over, then the average gain per trial is highly likely
to become arbitrarily close to your expected value within a finite amount of
time. So in the finite long run, the average value associated with a gamble is
overwhelmingly likely to be close to its expected value.

The strong law of large numbers states, on the other hand, that, where each
trial has an expected value of x, with probability 1, for any arbitrarily small
real number ϵ > 0, as the number of trials increases, your average payoff per
trial will fall within ϵ of x. In other words, then, as the number of repetitions of
a decision situation approaches infinity, the average gain per trial will become
arbitrarily close to your expected value with probability 1. So in the long run,
the average value associated with a gamble is virtually certain to equal its
expected value.

Thus, long run arguments justify expected utility theory—it’s said—because,
in the long run your actual payoffs would, with probability 1, be proportional
to your expected payoffs on any given trial. It makes sense, then, to choose an
option in a decision problem that maximizes EU.

4. Justifying EUTheory: RepresentationTheorems

But then again, sowhat? Inmost cases, the decisionswe face are one-off events.
So it’s cold comfort to say that, if you were to face the decision problem in-
finitely many times, you’d do best by following EU theory. That, you might
think, is a pretty slight justification.

So let’s look at another way EU theory can be justified. Unlike the long-run-
style arguments, these new arguments are much more recent. The first argu-
ment of this form was given by Ramsey (1926). And similar arguments were
later given by von Neumann and Morgenstern (1947) and Savage (1967).

The kind of argument I have in mind is known as an argument from rep-
resentation theorems. The rough idea is that, rather than thinking of EU
theory as something which itself has to be justified, we instead show that
it follows from more basic premises. And then we give arguments for those
premises instead. In particular, the goal of this kind of argument is to show

2



that, if you have preferences between outcomes (worlds) that satisfy certain
conditions, then you can always be represented as if you were choosing by
maximizing EU. In this sense, then, the normative content of EU theory is not
located in the claim that you should choose by maximizing EU. Rather, it’s
found in your more basic preferences.

Proving theorems of this kind is quite difficult. But to get a feel for how they
work, let me introduce you to the axioms of preference, given by von Neu-
mann and Morgenstern (1947). First, then, let ⪰ represent ‘weak preference’.
That is, wsucceqv means you’d weakly prefer if w were the actual world to
v being the actual world. Strict preference is then defined as w ⪰ v but not
v ⪰ w. And indifference is defined as w ⪰ v and v ⪰ w. (In what follows, I’ll
write indifference as ‘∼’.) Now, here are the axioms:

• Completeness. For all w, v, w ⪰ v or v ⪰ w (or both).

• Transitivity. For all w, v, x, if w ⪰ v and v ⪰ x, then w ⪰ x.

• Continuity. For all w, v, x, if w ⪰ v and v ⪰ x, then there exists a proba-
bility p ∈ [0, 1] such that v ∼ (p · w) + (1 − p) · x

• Independence. For all w, v, x, if w ∼ v, then for every probability p ∈
[0, 1], (p · w) + (1 − p) · x ∼ (p · v) + (1 − p) · x.

Completeness just says that every world features in your preference-ranking.
Transitivity says that your preferences don’t form “cycles”. Independence says
that, if you’re indifferent between w and v, then you’re indifferent between a
gamble that gives you w with probability p, and x with probability (1 − p);
and a gamble that gives v with probability p, and x with probability (1 − p).
Continuity is really the only difficult axiom here. Here’s roughly what it says:
if you prefer w to v and v to x, then there exists a probability p such that
you’ll be indifferent between v and a gamble that combines w and x with
probabilities p and 1 − p, respectively. The rough idea is that, no matter how
much you prefer w to v and v to x, we can always find a probability such
that weighting p by this probability, and weighting x by (1 − p) makes you
indifferent between that gamble, and having v for sure.

I’ll say more about Continuity in a moment. The important thing for us to

note now is that, if you satisfy the axioms above—and your choices reflect your
preferences—then youwill always choose as if you weremaximizing EU. Once
again, then, representation theorem arguments seek to say that the normative
content of EU theory is found in the above axioms. It’s your preferences that
can be rational or irrational; and EU theory is merely a consistency condition
on your preferences.

5. Digression: Pascal’s Wager

One important thing to note about the Continuity axiom is that it implies
utility is bounded (above and below). In other words, there is some maximum,
and minimum, value for the utility of a world. Now, with that in mind, let’s
consider a famous decision problem. Here’s how it goes:

God is, or He is not. But to which side shall we incline? Reason can
decide nothing here. There is an infinite chaos which separated us. A
game is being played at the extremity of this infinite distance where
heads or tails will turn up… Which will you choose then? Let us see.
Since you must choose, let us see which interests you least. You have
two things to lose, the true and the good; and two things to stake, your
reason and your will, your knowledge and your happiness; and your
nature has two things to shun, error and misery. Your reason is no
more shocked in choosing one rather than the other, since you must
of necessity choose… But your happiness? Let us weigh the gain and
the loss in wagering that God is… If you gain, you gain all; if you lose,
you lose nothing. Wager, then, without hesitation that He is.

Here, Pascal is essentially proposing you the following gamble:

God exists God doesn’t exist
Believe in God Infinite happiness Status quo

Don’t believe in God Misery Status quo

What, then, does EU theory say about this gamble?

Many writers—a shocking number, in fact—have argued that EU theory says
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you should choose to believe in God in this case. (Indeed, that’s effectively
Pascal’s argument.) After all, if we take the utility of infinite bliss to be ∞, we
take the utility of misery to be some finite (or infinite) negative number (say,
−100), and we take the utility of the status quo to be 0, then:

EU(Believe in God) = p(God exists) · ∞ + p(God doesn’t exist) · 0
= ∞

EU(Don’t believe in God) = p(God exists) · −100 + p(God doesn’t exist) · 0
= p(God exists) · −100.

Thus, the expected payoff of believing in God is infinite! But according to the
representation theorem argument for EU theory, this argumentmakes no sense.
That’s because the Continuity axiom implies that utility is bounded. So there’s
no way the utility of God’s existence can be infinite. Thus: Pascal’s wager
involves a violation of the Continuity axiom!

6. The Value of Information

Let me now introduce you to a very cool consequence of EU theory—the so-
called value of information theorem. Roughly, the Value of Information Prin-
ciple says that, in expectation, it’s always at least as good to learn free infor-
mation, before making a decision, as it is to make that decision straight away.
Formally, if E1, ..., En form a partition, then:

∑
i

p(Ei) · max
j

∑
s

p(s | Ei) · Oj(s) ≥ max
j

∑
s

p(s) · Oj(s).

To see this, just notice that it follows, by the law of total probability, that the
right-hand side of the inequality above can be re-written as follows:

max
j

∑
s

p(s) · Oj(s) = max
j

∑
s

p(s | Ei) · p(Ei) · Oj(s)

= max
j

∑
i

p(Ei) · ∑
s

p(s | Ei) · Oj(s).

Now compare the last line here to the left-hand side to the foregoing inequality.
The first is a maximum of averages, while the second is an average of maxima.
The former can never exceed the latter, on general mathematical grounds. So
EU theory says that learning new information always leaves you better off, in
expectation.

7. Risk-aversion

Historically speaking, one of the chief criticisms of EU thoery is that it doesn’t
pay sufficient attention to an agent’s attitude to risk. To illustrate what I mean
by this, consider the following case—the now famous Allais paradox. Imagine
you have a choice between the following gambles:

(1) $5, 000, 000 with probability 0.1, or $0 with probability 0.9,

(2) $1, 000, 000 with probability 0.11, or $0 with probability 0.89.

Presented with these options, most people report that they’d rather take the
first. But now consider the following two gambles instead:

(1∗) $1, 000, 000 with probability 0.89, $5, 000, 000 with probability 0.1, and
$0 with probability 0.01

(2∗) $1, 000, 000 with probability 1.

Unlike in the first case, most people say that they’d rather take the second
gamble here, namely (2∗). However, these preferences are inconsistent with
the claim that you should maximize EU. Specifically, there is no assignment
of utility values to dollars such that (1) has a higher expected utility than (2),
but (2∗) has a higher expected utility than (1∗). But since these choices both
seem intuitively rational, this looks like a problem for EU theory. What do you
think?
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Today we’re going to be looking at generalizations of expected utility theory.
But first, we need to talk about two things left over from last time.

1. The Value of Information

EU theory has a very cool consequence—the so-called value of information
theorem. Roughly, the Value of Information Principle says that, in expecta-
tion, it’s always at least as good to learn free information, before making a
decision, as it is to make that decision straight away. Formally, if E1, ..., En

form a partition, then:

∑
i

p(Ei) · max
j

∑
s

p(s | Ei) · Oj(s) ≥ max
j

∑
s

p(s) · Oj(s).

To see this, just notice that it follows, by the law of total probability, that the
right-hand side of the inequality above can be re-written as follows:

max
j

∑
s

p(s) · Oj(s) = max
j

∑
s

p(s | Ei) · p(Ei) · Oj(s)

= max
j

∑
i

p(Ei) · ∑
s

p(s | Ei) · Oj(s).

Now compare the last line here to the left-hand side to the foregoing inequality.
The first is a maximum of averages, while the second is an average of maxima.
The former can never exceed the latter, on general mathematical grounds. So
EU theory says that learning new information always leaves you better off, in
expectation.

7. Risk-aversion

Historically speaking, one of the chief criticisms of EU thoery is that it doesn’t
pay sufficient attention to an agent’s attitude to risk. To illustrate what I mean

by this, consider the following case—the now famous Allais paradox. Imagine
you have a choice between the following gambles:

(1) $5, 000, 000 with probability 0.1, or $0 with probability 0.9,

(2) $1, 000, 000 with probability 0.11, or $0 with probability 0.89.

Presented with these options, most people report that they’d rather take the
first. But now consider the following two gambles instead:

(1∗) $1, 000, 000 with probability 0.89, $5, 000, 000 with probability 0.1, and
$0 with probability 0.01

(2∗) $1, 000, 000 with probability 1.

Unlike in the first case, most people say that they’d rather take the second
gamble here, namely (2∗). However, these preferences are inconsistent with
the claim that you should maximize EU. Specifically, there is no assignment
of utility values to dollars such that (1) has a higher expected utility than (2),
but (2∗) has a higher expected utility than (1∗). But since these choices both
seem intuitively rational, this looks like a problem for EU theory. What do you
think?

3. Dominance and Act-State Dependence

Like I said, risk-aversion has historically played an important role in criticisms
of EU theory. However, there’s been another kind of criticism that’s been at
least as important. And it stems from a principle called dominance.

Dominance is best illustrated with an example. Thus, suppose I offer you a bet
that pays $10 if a coin lands heads, or $5 if it lands tails. You can either accept
this bet or decline it. What should you do?

Obviously, you should accept the bet. After all, nomatter how things turn out—
nomatter whether the coin lands heads or tails—you gain money by accepting
the bet, whereas you gain nothing by declining. In short, then, we say that
accepting the bet dominates declining.

More generally, one option O1 weakly dominates another, O2, iff O1(w) ≥
O2(w) for all possible worlds w, and for some some possible world w,
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O1(w) > Ow(2w). Furthermore, O1 strictly dominates O2 iff O1(w) >

O2(w) for all w.

As it turns out, dominance is a consequence of EU maximization. That is, if O1

dominatesO2, then O1 must have greater expected utility than O2 as well. You
might even think that dominance is the degenerate case of EU-maximization.

But in fact, the situation surrounding dominance turns out to be more compli-
cated than you might realize. To see why, let’s look at an example.

Drunk Driving. You’ve been drinking all day, and now it’s time to return
home to sleep it off. You can either drive your own car home, or take
a taxi. You may or may not get in a car accident on the way home. But
if you drive your own car home and get in an accident, then at least
you’d have saved on the taxi fare. What, then, should you do: take a
taxi? Or drive yourself?

Tomake things concrete, let’s say that getting in an accident is worth−$1, 000
to you (maybe, for example, that’s how much you’d expect to pay on medical
bills), while the taxi fare you expect to pay is a flat $10. Here, then, is a decision
matrix, which summarizes your situation:

¬C C
D $0 −$1, 000
T −$10 −$1, 010

In this matrix, D denotes the option that you drive your own car home, and T
is the proposition that you instead take a taxi. Meanwhile, C and ¬C are the
propositions that you get in a crash, and don’t get in a crash, respectively. So,
in this case, D and T are your options, while C and ¬C are the relevant states
of the world.

Now, a straight forward application of EU theory seems to deliver the verdict

that you should drive your own car home. After all:

EU(D) = p(C) · u($0) + p(¬C) · u(−$1, 000)
= p(C) · 0 + p(¬C) · −1, 000
= p(¬C)− 1, 000.

Furthermore:

EU(T) = p(C) · u(−$10) + p(¬C) · u(−$1, 010)
= p(C) · −10 + p(¬C) · −1, 010
= −10 + p(¬C)− 1, 000.

Thus, it seems like driving your own car home leaves you better off, no matter
whether you crash or not.

But of course, that’s absurd.The issue here is that driving yourself homemakes
it more likely that you’ll get in a crash, while taking a taxi makes this likely.
More generally, EU theory doesn’t take account of how the state of the world
can depend on your choice of an option.

How, then, should we fix this?

4. Evidential DecisionTheory

In the 1960s, this was an open question. But the philosopher Richard Jeffrey
proposed a brilliant answer to it. Rather than using unconditional probabili-
ties, he said, we should use conditional probabilities, when calculating EU. In
particular, we should use the probability of various outcomes, conditional on
your choice of an option.

To see what this means, we need to slightly change our initial formalism. Ear-
lier (recall), we thought options as random variables: functions fromworlds to
real numbers. Now we’re going to think of them as propositions—namely, the
finest-grained propositions you believe you can make true by deciding. Thus,
to make a proposition true is to perform the action which that proposition
expresses. For example, if I want to make it true that I take a taxi, rather than
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drive myself home, I simply perform the action of taking the taxi. (We need
to think of options in this way if they’re going to be used when calculating
EU—after all, the arguments to probability functions are propositions.)

We also need to introduce a function, u—your utility function—which maps
worlds to real numbers. Intuitively, this function takes in a possible world, and
maps it to a real number, u(w), that represents how good things would be, for
you, if that world were actual. For present purposes, the exact numbers we
use are unimportant. So long as your preferences between worlds satisfy the
rationality axioms we talked about last time, we can simply choose a world w
to act as the zero-point (i.e., u(w) = 0), and we can choose another world v to
act as the unit (i.e., u(v) = 1), and then all our numbers simply fall out of that.
As we say, the utility function is unique up to positive affine transformation.

Now, here’s what Jeffrey’s theory says. Rather than choosing options by calcu-
lating EU, you instead choose options that maximize the following quantity—
evidential expected utility:

EEU(O) = ∑
w

p(w | O) · u(w).

So, the idea here is: you should choose on option that maximizes EU, condi-
tional on that option being chosen.

It’s fairly easy to see that Jeffrey’s theory delivers the right answer in the
Drunk Driving problem. To see this, let’s imagine that p(Crash | Drive) = .8,
and p(No Crash | Taxi) = .8. Then:

EEU(Drive) = p(Crash | Drive) · −1, 000 + p(No Crash | Drive) · 0
= .8 · −1, 000 + .2 · 0
= −800

And the EEU of the option B—taking both boxes—is:

EEU(Taxi) = p(Crash | Taxi) · −1, 000 + p(No Crash | Taxi) · 0
= .2 · −1, 000 + .8 · −10
= −208

Since −208 is greate than −800, EDT says you choose to take the taxi—the
right answer.

More generally, by calculating expectations using probabilities p(w | O), EDT
takes account of correlations between your choice of an option and the state of
the world. Moreover, it proves a plausible restriction of the dominance prin-
ciple. When is dominance reasoning valid? Only when your choice of an op-
tion is probabilistically independent—viz., uncorrelated—with what state of the
world obtains. Call this the evidential dominance principle.

5. Newcomb

Jeffrey’s EDT provides a neat solution to the problem of dominance, which
plagues standard EU theory.

Newcomb. In front of you are two boxes, labelled ‘A’ and ‘B’, respec-
tively. You can take either just box A, or both boxes. Box B is trans-
parent and contains what you can see to be a $1, 000 bill. Box A, in
contrast, is opaque, and you don’t know what’s inside it. The contents
of box Awere determined yesterday, on the basis of a prediction I made
about your behavior. If I predicted that you’d take only box A, then I
put $1, 000, 000 inside that box. But if I predicted you’d take both boxes,
then I left the opaque box empty. Note that I’m a highly reliable predic-
tor of your behavior. So, with that in mind: what is your choice?

In this case, EDT says that you should take just the opaque box. The reason is
that the contents of that box depend, evidentially, on your choice of a particu-
lar option. More precisely, there’s a strong correlation between choosing one
box and getting the million dollars; and there’s a strong correlation between
choosing both boxes and getting only a thousand dollars. It follows that the
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EEU of the option O—taking only one box—is:

EEU(O) = p($1, 000, 000 | O) · 1, 000, 000 + p($1, 001, 000 | O) · 1, 001, 000
≈ 1 · 1, 000, 000 + 0 · 1, 001, 000
= 1, 000, 000.

And the EEU of the option B—taking both boxes—is:

EEU(B) = p($0 | B) · 0 + p($1, 000 | O) · 1, 000
≈ 0 · 0 + 1 · 1, 000
= 1, 000.

Then, since EEU(O) is strictly greater than EEU(B), EDT says that you should
choose the former.

But that also seems absurd—at least to me, and to many other philosophers.
(With that said, however, the Newcomb problem remains controversial.) After
all, by assumption, your choice of an assumption cannot affect what’s in the
opaque box. I made the prediction yesterday, and either put the money in the
opaque box then, or didn’t. So, even though your choice is correlated with
the contents of the opaque box, you cannot cause the contents to be different
than what they are: true, taking both boxes gives you good evidence that the
opaque box is empty. But since the contents of that box are fixed, taking both
gives you $1, 000 more than taking one box would no matter what’s inside the
opaque box.

6. Causal Decision Theory

What the Newcomb problem illustrates, I think, is that, sometimes, the cor-
relations EDT pays attention to are mere spurious correlations—correlations
that don’t give you any evidence about what your choice of an option can
cause. What we need, then, arguably is a causal decision theory—one that re-
stricts the dominance principle, not to cases in which your choices are prob-
abilistically independent of the state of the world, but where they’re causally
independent.

The first theory of this kind was given by Stalnaker (in a letter, to David Lewis).
And it was developed in detail by Allan Gibbard and Bill Harper, Lewis, Brian
Skyrms, and my advisor, Jim Joyce. Their idea—cashed out in different ways—
was to use probabilities of counterfactuals, rather than conditional probabili-
ties, to calculate expected utilities. That is, we have the following:

CEU(O) = ∑
w

p(O □→ w) · u(w).

Roughly, this equation says that you should choose an option, O, whose out-
come you expect to be best if you were to choose O. Then, since there’s a tight
connection between counterfactuals and causation—for example, when you
want to know whether A caused B, you’ll often ask yourself questions like
‘Suppose A hadn’t happened. Then, would B have happened?’—we can think
of this theory as saying that you should choose an option that you expect to
cause the best results.¹

Causal decision theory (CDT) also gets the right results in the Newcomb
problem—i.e., it tells you to take both boxes. To see why, think about Lewis’s
miracles account of similarity. That account says you should hold the past
fixed, up until a moment shortly before the counterfactual’s antecedent. So:
since the contents of the opaque box are fixed by the time you take the opaque
box, your credence in O □→ $1, 000, 000 is just your credence that I predicted
you to take only the opaque box. Similarly for B □→ $1, 001, 000. Andmutatis
mutandis for the other counterfactuals.Thus, in this case, CDT says dominance
reasoning applies—taking both boxes leaves you better off, no matter what.

1. For more on the relation between subjunctive supposition and causation, and how
this relates to CDT, see Lewis (1981), Joyce (1999), Hitchcock (2013), Kment (2023), Mc-
Namara (2023), and especially Gallow (2024). Note that not every philosopher agrees
that Stalnakerian CDT is best interpreted as a causal theory. See, e.g., Dorr (2016) and
Hedden (2023) for more on this.
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