PHIL 210/510: Formal Methods

Lecture 1: Sets, Relations, and Functions

Yale, Spring 2025
Dr. Calum McNamara

1. Sets

Set theory is the foundation of mathematics—and also a useful field of study
for philosophers. It’s basic concept is that of a set. Roughly speaking, a set is
a collection of objects.” For our purposes, it doesn’t matter what these objects
are. They could be numbers, people, countries, etc.

To illustrate, take three objects—say, Mishka (my cat), the number 3, and Ice-
land (the country). We can collect these things into a set. We can also denote
this set by writing names for its objects, and enclosing them in curly braces:

{Mishka, 3, Iceland}.

We call the objects in this set its elements or members.

Alternatively, consider the set consisting of all the people currently living in
Japan. We can write this set as follows:

{x : x is a person currently living in Japan}.

Read this as: “The set of all x such that x is a person currently living in Japan’.
Here, we pick out the set by specifying some property shared by all its mem-
bers. (This is called the intensive way specifying a set; the other way we
looked at is called the extensive way.)

Challenge Question. For any property we can think of, can we form a set
whose members have that property? Why or why not?

If A is a set, and x is an element of that set, then we write ‘x € A’ to say that

x is an element of A. Here, ‘€’ is the symbol for set membership.

1. This definition is informal—and indeed, the notion of a set in mathematics is often
taken as a kind of undefined primitive.

Sets are defined by their members. We call this the axiom of extensionality.
To see what this means, consider this set:

{Mishka, Mishka, Mishka}.

How many members does this set have? The answer is 1 (not 3). Writing the
name for an object in the set multiple times doesn’t change how many things
are in that set. (This idea turns out to be surprisingly important.)

2. Unions, Intersections, and Relative complements

Consider two sets. First: {1,3,5}. And second: {1,2,3,4}. The union of these
sets is the set: {1,2,3,4,5}. More generally, if A and B are sets, then their

union is—written ‘A U B’—is the set:
AUB = {x: xis an element of A or x is an element of B}.

(Note that, just as in logic, we take ‘or’ to be inclusive.) Conversely, the inter-
section of the two sets above is the set: {1,3}. More generally, the intersec-
tion of two sets A and B—written ‘A N B’—is:

ANB = {x:xisan element of A and x is an element of B}.

Finally, the relative complement of {1,3,5} in the set {1,2,3,4} is the set
{2,4}. More generally, the relative complement of A in B—written ‘B \ A’—is
the set:

B\A={xeB:x¢ A}.

(‘¢’ is just our symbol for “non-membership”.) This is also sometimes called
the set difference of B and A. Note that it’s not possible to have the comple-
ment of a set simpliciter—complementation is always “relative” to a given set.
We’ll see why that is in a couple of lectures’ time.

3. Subsets and the Empty Set

Consider the set consisting of all natural numbers, 0, 1, 2, 3,... This set is so

important that we usually denote using a special symbol, ‘IN’:
N ={0,1,2,3,..}.
Consider also the set of even natural numbers:
E ={0,2,4,6,...}.
Clearly, every element in E is also an element of IN. Thus, we say that [E is a

subset of IN.

More generally: a set A is a subset of another set B just in case every element
in A is also an element in B. We write this as follows: ‘A C B’. (Two sets are

equal just in case each is a subset of the other.)

Note that every set is a subset of itself. (After all, look at the definition for ‘sub-
set’ we just gave!) When B contains some elements that A does not, however,
then we say that A is a proper subset of B, and we write this ‘A C B’.

Note also that there’s a special set, called the empty set, denoted &, that’s a

subset of every set. The empty set & has no members at all.?

Challenge Question. Why is the empty set a subset of every set? (Hint: use
the definition of ‘subset’.)

4. Power sets

Consider the set A = {1,2,3}. How many subsets does it have? The answer
is: 8: @, {1}, {2}, {3}, {1,2},{2,3},{1,3}, {1,2,3}.

If we collect all the subsets of A into a single set, we get a set called the power
set of A. We denote this set Pow(A) (although different notations are some-

times used).

Challenge Question. If a set A has n members (where 7 is a natural number),
can you say how many members the power set of A has?

2. It’s permissible to write the empty set as ‘{ }".

5. Relations

Consider again the sets {1,3,5} and {1,2,3,4}. The Cartesian product of
these sets is the set of all ordered pairs, (x,1), whose first member is an
element of the first set, and whose second element is an element of the second.

More generally, if A and B are sets, then the Cartesian product of A and B,
written ‘A X B’ is the set:

{{x,y) :x € Aandy € B}.
(We can generalize this definition to include three sets, four sets, etc. But we’ll
focus mostly on just two sets, for present purposes.)

A binary relation is a subset of the Cartesian product of two sets.? (Likewise,
a ternary relation is a Cartesian product of three sets, etc.)

To illustrate the notion of a binary relation, let A be the set of all living people.
Then A X A is the set of all pairs of living people. One kind of binary relation
might then be:

R = {(x,y) : xis asibling of y}.

Clearly, R is a subset of A X A. Note that we often use the notation xRy’ or
‘Rxy’ to say that ‘x stands in the relation R to y’. (Relations will come up a lot

when we study modal logic.)
6. Functions

A function is a special kind of relation. It’s a relation R such that, for every
x, there’s exactly one y such that x stands in the relation R to y.

To illustrate: consider the familiar function f(x) = x2, where x is a natural
number. This can be thought of as a set of pairs: {(1,1), (2,4), ...}.

We'll say a bit more about functions next time.

3. In this class, if T use the word ‘relation’ on its own, I'll almost always mean ‘binary
relation’.

PHIL 210/510: Formal Methods
Lecture 2: Left-overs; Logic

Yale, Spring 2025
Dr. Calum McNamara

1. More on Sets—and Venn Diagrams

Last time, we talked (a bit quickly!) about set theory. Among other things,
we talked about the algebra of sets—things like unions, intersections, and

relative complements.

Remember the definitions:
« The union of A and B is the set: {x : x € A or x € B}.
« The intersection of A and B is the set: {x : x € A and x € B}.
« The relative complement of A in Bis the set: {x € B: x ¢ A}.

(One thing I forgot to say: we often use the notation ‘A U B’ for the union of
A and B; “A N B’ for the intersection of A and B; and ‘B \ A’ (or sometimes
‘B — A’ or even ‘A° € B’) for the relative complement of A in B. I corrected
this on the previous handout.)

It’s surprisingly easy to visualize these concepts using Venn diagrams. For

example, here’s one way you can visualize sets A, B, and their intersection:

A B

Figure1: Set intersection

Challenge Question. How would you alter this Venn diagram, so as to visu-
alize the union of A and B, and the relative complement of A in B?

2. Relations and Functions

Consider the sets {1,3,5} and {1,2,3,4}. The Cartesian product of these
sets is the set of all ordered pairs, (x, 1), whose first member is an element

of the first set, and whose second element is an element of the second—e.g.,
(1,1), (1,2), etc.

More generally, if A and B are sets, then the Cartesian product of A and B,
written ‘A X B’, is the set:

{(x,y) :x € Aand y € B}.

(We can generalize this definition to include three sets, four sets, etc. But we’ll
focus mostly on just two sets, for present purposes.)

A binary relation is a subset of the Cartesian product of two sets." (Likewise,
a ternary relation is a subset of the Cartesian product of three sets, etc.)

To illustrate the notion of a binary relation, let A be the set of all living people.
Then A X A is the set of all pairs of living people. One kind of binary relation
might then be:

R = {(x,y) : xis a sibling of y}.

Clearly, R is a subset of A X A. Note that we often use the notation xRy’ or
‘Rxy’ to say that ‘x stands in the relation R to y’. (Relations will come up a lot
when we study modal logic.)

A function is a special kind of relation. It’s a relation R such that, for every
x, there’s exactly one y such that x stands in the relation R to y.

To illustrate: consider the familiar function f(x) = x2, where x is a natural
number. This can be thought of as a set of pairs: {(1,1), (2,4), ...}.

Let R be a relation (or a function—it doesn’t matter). The domain of R, writ-
ten ‘dom(R)’ is the set: {x : there exists a y such that xRy }. Meanwhile, the
range of R, ‘ran(R)’, is the set: {y : there exists a x such that xRy}

1. In this class, if I use the word ‘relation’ on its own, I'll almost always mean ‘binary
relation’.

3. Propositional Logic—from 50k Feet

If you took Phil 115 with me, you probably got sick of me saying: ‘Logic is the
study of arguments’” That’s still true; but we’re now going to think of logic
a bit more abstractly. In particular, we’re going to think about propositional

logic as a formal system.

A formal system has two components: (i) a formal language and (ii) a deduc-
tive system. The tree below is a graphical representation of that situation for

propositional logic:

The Formal System of Propositional Logic

Deductive System

P .

Symbols Formation Rules Axioms Rules of Inference

Connectives E.g.,if ¢ is a formula, (standardly) E.g., modus ponens

Formal Language

Propositional Atoms so is —¢.

Parentheses

In propositional logic, the formal language is (often) comprised of the follow-

ing symbols:
« Parentheses: (,),
« Negation symbol: —,
« Conjunction symbol: A,

« Disjunction symbol: V,

2. I'mreally hoping everyone in this class has some familiarity with logic, at least to
the level of a course like Yale’s Phil 115. If you don’t, please speak to me—I can help
you fill in the background.

« Material conditional symbol: D,?
« Proposition atoms: p1, p2, ...; sometimes p, g, 7,

Then, we have formation rules for putting these symbols together, to form

legitimate formulas of the language:

(i) Every propositional atom, p1, p2, ... (or p, g....) is a formula.

(ii) If ¢ is formula, then so is —¢.*
(iii) If ¢ and ¥ are formulas, then sois (¢ A), (¢ V ¢), and (¢ D ¥).
(iv) Nothing else is a formula.

Meanwhile, the deductive system for propostional logic tells how, if we start
with some formulas, we can derive other formulas, using some rules—so-
called rules of inference. One way we can do this is to start with a very
large stock of rules of inference. If you’ve learned natural deduction before,

this is how you would’ve done things.

A different way we can specify the deductive system, however, is to start with
a small stock of formulas, whose truth we take for granted. These are called
axioms. For example, in propositional logic, one famous set of axioms is the

following (due to Jan Lukasiewicz):’
- (9D (¥ D)),
- (@2 @D x)D(¢D¢) D (P Dx))
« (¢ 2> —9) D (¥ O ¢)).

We then take the following rule as our only rule of inference:

« Modus Ponens. Given ¢ and (¢ D), infer ¢.

3. In previous courses, you may have used the symbol ‘—’ for the material condi-
tional. In these notes, however, we reserve ‘—’ for the indicative conditional symbol
(see chapter 4), and stick with ‘D’ for the material conditional.

4. Hang on! What the heck is ‘¢’ here? Think of it as a placeholder, which could stand
for any formula. It’s sort of analogous to how a variable, x, can stand for a number.

5. Strictly speaking, Lukasiewicz’s axioms are all axiom schemas. We get legitimate
axioms, when we replace the ¢’s and 1’s with formulas of propositional logic.

We call any formula in a deductive system, which we can derive from the

axioms, using the rules, a theorem of the system.
4. A Toy Formal System

One of the best ways to get a feel for how formal systems—like the one we
just constructed—work is by playing with them.

With that in mind, then, let’s play a game with a toy formal system, from
Douglas Hofstadter’s famous book Godel, Escher, Bach (1979): the so-called
MIU system.

The formal language of the MIU system consists of “strings” of the following

3

symbols: ‘M’, T, ‘U’. We also have a single axiom: Ml. The theorems of the
system are then strings we can “build” using these rules:

(1) If you have a string whose last letter is ‘T’, then you can add a ‘U’ at the
end.

(2) Suppose you have a string M¢ (where ¢ is any string). Then you can write
M¢¢ (where ¢ again is a string).

(3) If you have three T’s in a row in your string, i.e., your string contains TIT’,
then you can replace TII’ with ‘U,

(4) If ‘UU’ occurs inside your string, you can delete it.
Challenge Questions.

« Given the axiom MI, show that you can write ‘MIU’.

« Now that we have MIU, show that we can write ‘MIUIU’.

« Imagine that we have a string UMIIMU. Show that we can write
‘UMUMU’.

« Suppose we have the string MUU. Show that we can simply write ‘M.

Like I said, it’s fun to play around with this system, and see what well-formed
strings you can legitimately arrive at. (These are the theorems.) (For example,

in illustrating rules 3 and 4, I assumed that we had the strings UMIIIMU and

MUU. But are those theorems that we can arrive at given the axiom MI and

the rules 1-4 in the first place? The answer isn’t obvious.)

If you're really keen, try the following exercise: try “to make [the string] MU.
Don’t worry if you don’t get it. Just try it out a bit—the main thing is for you
to get the flavor of this MU-puzzle. Have fun” (Hofstadter, 2000, p. 35).°

5. Back to Propositional Logic

Now what we want to do is some of the same thing in propositional logic. In
this case (again), we have the following three axiom schemas:

(9D (¥ D9)).
C@D D) (PO %) D (9.
< (=9 2 %) D (¥ > 9)).
And we have the following rule of inference:
. Modus Ponens. Given ¢ and (@ O 1), infer 1.

Challenge Question. Can you derive the formula ((p D g) D (p D p))
from the axioms? How about (p D p)?

6. The Epistemology of Logic

Since this is a philosophy course, let’s do some philosophy. Recall that our
one rule of inference in propositional logic is modus ponens. Here’s a natural
language example—which Phil 115 students are probably sick of.”

P1 It’s raining.
P2 Ifit’s raining, then it’s wet.

.. It’s wet.

6. Hint: if you try this, you may be trying for a very long time...
7. Recall that the symbol .". in the following means ‘therefore’.

This argument certainly seems valid—and thankfully, it is according to the sys-
tem of propositional logic we sketched earlier. In fact, every argument that ex-
hibits this basic structure is valid in propositional logic. That seems like a good
thing, prima facie. It’s difficult to even think of natural language arguments

that (intuitively) invalidate modus ponens.

It’s difficult, but (arguably) it’s not impossible. Vann McGee (1985), for exam-

ple, believes the following argument is a counterexample to modus ponens:®

P1 If a Republican wins the election, then if it’s not Reagan who wins it will

be Anderson.
P2 A Republican will win the election.
.. If it’s not Reagan who wins it will be Anderson.

The first premise seems plausible. (Suppose a Republican wins. Then, if there
are only two such Republicans in the running—Reagan and Anderson—if it’s
not Reagan, it has to be Anderson.) Similarly, the second premise is plausi-
ble. (Suppose you’re back in 1985, just prior to the votes being counted. The
polls heavily favor a Republican win.) But the conclusion seems implausible:
Reagan was a popular politician at the time. But Anderson was a laughing
stock.

More generally, McGee thinks that arguments that exhibit the following struc-
ture are counterexamples to modus ponens:

P1 (¢ D (¢ D))
P2 ¢
(P D)

McGee justifies his claim by saying that it’s easy to find instances of the above
schema where we believe P1 and P2, and yet do not believe the conclusion

8. This isn’t quite true. Vann McGee believes that modus ponens isn’t a valid rule of
inference for natural language conditionals, like those below. But he also doesn’t believe
that natural language conditionals are the material conditional.

of the argument. This is strange since valid arguments—of which McGee’s

schema alleges to be one—are supposed to be “truth-preserving”.
What do you think?
7. Predicate Logic

So far, we’ve focused on propositional logic. But we can extend our formal
system to encompass predicate logic, too. In that case we extend our language
with additional symbols:

« Names: 4,b,c,...
« Variables: x,y, z, ...
« Predicate symbols: F,G, R, ...
« Quantifiers: V, 3
We also add the following formation rules:
« Fa,Fb,Ga, Gb, Rab, Rba, etc., are formulas:

« If ¢ is a formula in which the name 4 appears, then so is (Vx)¢(a := x)
and (3x)¢(a := x). (Here ‘(a := x)’ means ‘where each instance of the

name 4 is replaced with the variable x’.)

The details of this extension to the language of propositional logic isn’t so

important. All I want to note is that it can be done.

Likewise, we can extend our deductive system with new axioms, and new

rules. The additional axioms are often taken to be these:
. (¥0)9 > plx = a)
« (Vx)(¢ 2 ¢9) O (¢ D (Vx)¢).

And the additional rule is:
« Universal Generalization. From ¢, infer (Vx)¢.

We’ll talk more about predicate logic in subsequent weeks.

PHIL 210/510: Formal Methods
Lecture 3: Infinity

Yale, Spring 2025
Dr. Calum McNamara

1. Propositional Logic as a Formal System—Again

Last time, we talked a little bit about the formal system of propositional
logic. Recall that, in this formal system, the formal language consists of for-
mulas like p A q (‘p and q), p D q (If p, then q°), =p (‘not p’), and so on.
Meanwhile, our deductive system—or at least, one version of the deductive
system—consists of the following three axiom schemas:

< (9D (¥ >9))
c (2o x)>e2>¥)>(¢Dx))
« (5D —~9) D (¥ D ¢)).
as well as the following rule of inference:
- Modus Ponens. Given ¢ and (¢ D), infer .

Challenge Question. Can you derive the formula ((p D q) D (p D p))
from the axioms? How about (p D p)?

Note that the system of (first-order) predicate logic builds on this formal
system. It does so by enriching the formal language with formulas like (Vx)Fx
(‘for all x, x has property F’), and (3x) Fx (‘there exists an x with property F),
as well as a couple of new axioms and rules. We’ll talk more about that system
later in the course, when we briefly touch on higher-order logic.

2. The Numbers as a Formal System

Why are we introducing propositional logic in this extremely abstract way?
One reason is that it helps to introduce the notion of a formal system in general.
It’s useful to know what a formal system is, and how to construct one, because
they pop up all the time (albeit, sometimes in disguised ways).

For example, take the natural numbers, N = {0,1,2,...}. As it turns out,
these numbers, together with the usual rules of arithmetic, can also be viewed

as a formal system. Here’s a hint of how that works.

Our formal language consists of the following symbols: the number 0, paren-
theses, and the letter S.! Well-formed formulas of the system look like: 0, S(0),
5(5(0)), etc. We can read ‘S(0)’ as ‘the successor of 0°—and this, of course,
is the number 1. Likewise, ‘S(S(0))’ says ‘the successor of the successor of
0°’—namely, the number 2, and so on. Thus, we allow ourselves to use ‘1°, 2’,
etc., as shorthands for the relevant successors.

Now here are our axioms (these are often called the Peano axioms):
+ 01is a number.
« If n is a number then so is its S(n), the successor of 7.
« 0 is not the successor of any number.

« If S(n) = S(m), then n = m. (In other words, every number has a unique

successor.)

« Let P(n) be any statement describing a property pertaining to the num-
ber n. Suppose that P(0) is true, and suppose that, whenever P(n) is true,
then so it P(S(n)). Then P(n) is true for every number #. (This is some-
times called the Principle of Mathematical Induction—we’ll talk about

it more on Wednesday:.)

We can think, here, of the second axiom as also describing our one rule of
inference: if we have a number of 7, then can conclude that S(n) is also a

number.

As it turns out, these five axioms characterize almost everything we know
about the natural numbers.?

Challenge Questions. Prove—from the axioms!—that 3 is a natural number.

How would you define addition in our system? How about multiplication?

3. Constructing the Numbers from Sets

1. If you did the Russell reading, he uses ‘succ’ instead of S.

2. Isay ‘almost’ because when it comes to defining addition, etc., we have to introduce
some additional definitions. For example, we have to stipulate that, for any n,n +0 =
n.

At this point, we have assumed the existence of something that “plays the role”
of zero—that’s what our first axiom tells us. But what exactly is the number

zero?

One way to think about the numbers is in terms of sets. In particular, the math-
ematician John von Neumann® showed that the following model satisfies all

of the axioms we gave above:
L0={}=2
L 1=5(0) = {o},
L 2=5(5(0) = {2,{2}},
- 3=5(5(500)) = {2, {2}, {2, {2}}).
« Etc.

So, roughly: von Neumann’s definition says that the natural numbers are what
we get by starting with the empty sets, and then forming sets, recursively, out

of everything that came before.
4. The Infinite

It’s clear that our operation S—or the set operations used in von Neaumann’s
hierarchy—can be used to “generate” numbers indefinitely. That is, even
though every number # is finite, the set of all natural numbers is infinite.

That’s still a bit vague, however. So how can we get a handle on it? Well, let’s
start again by thinking about the natural numbers, 0,1,2, 3, Now think
about the even numbers, 0,2, 4,6, Notice something weird. We can write
a list in which every even number is paired off, one to one, with a natural
number:

0.0

1.2

3. Youshould Google von Neumann. He contributed to just about every field of human
inquiry you can think of.

So, the weird thing here is that, even though it looks like there should be half
as many even numbers as natural numbers, nevertheless we can pair them off
one-to-one.

Interestingly, the same thing goes when we consider a set that looks like it
should have more numbers than the natural numbers. For instance, consider
the set of all integers: Z = {...,—2,—1,0,1,2,...}. Once again, we can pair
the integers off one-to-one with the natural numbers:

This is weird. After all, the even numbers are a proper subset of the natural
numbers. And the natural numbers are a proper subset of the integers. Thus,

the examples we gave above lend themselves to a definition of ‘infinite set’

Definition (Infinite Set). A set A is infinite iff it can be put into a one-to-one

correspondence with one of its proper subsets. It’s finite otherwise.

Definition (Countable). A set A is countable iff either (a) it’s finite, or (b) it
can be put into one-to-one correspondence with the set of natural numbers.
It’s uncountable otherwise.

The above also lends itself to a definition of “size” for sets:

Definition (Cardinality). Two sets A and B have the same cardinality (viz.,

size) iff their members can be put into one-to-one correspondence.

5. The Uncountable

Let’s consider one more example. Can the set of rational numbers—i.e., num-
bers of the form 7 /m—be put into a one-to-one correspondence with the set
of natural numbers? In other words, can does the set of rationals, QQ, have
the same cardinality as IN? Amazingly, the answer is ‘Yes’. To see how, con-
sider the following image (ripped from David Papineau’s book Philosophical

Devices):

V1 —p 21 31 4/l 511y 6/1

4 4 e
e 44 f
a2 i

e g

1/5 p/

The idea here is that the “fraction” 1/1 goes in position 1; 1/2 goes in position
2;2/1 goes in position 3; 1/3 goes in position 4; and so on.

Thus, once again, even though it looks like there are “more” rational numbers
than natural numbers, that turns out not to be true: Q can be put into one-
to-one correspondence with IN. This might lead you to wonder whether every
infinite set has the same size as IN. Bafflingly, the answer turns out to be ‘No’.
To illustrate, consider the set of real numbers, R. This is the set of all num-
bers that can be expressed as an infinite decimal expansion. This includes the
naturals, the integers, and the rationals, but also “irrational numbers” like 7z
and e.

To see that there are more reals than naturals, consider the following (incin-
dentally, the proof here also illustrates one of the proof techniques we’ll talk
about on Wednesday). Suppose all the real numbers between 0 and 1 can be

put on a list, e.g.:

0. 0.1237263...

1. 0.43847485...
2. 0.4548457...

3. 0.3843758...

I claim we can construct anumber that’s guaranteed not to be on this list. To do
so, we make the first digit one more than the first digit of the first number in
this list, the second digit one more than the second digit of the second number,
the third digit one more than the third digit of the third number, and so on . .
. (using o as ‘one more than 9’ whenever the nth digit in the nth number is 9).
Thus, the number we can construct, given the list I wrote, is: 0.2454....

Notice, however, that given our supposed initial listing of the reals between 0
and 1, our new number can’t be anywhere in the original list, since it differs
from the first number in the first digit, from the second in the second digit,

and so on.

Thus, what we’ve shown here is that the real numbers cannot be put into one-to-
one correspondence with the natural numbers. More broadly, what we’ve shown
is that there are infinite sets of different sizes. The set of natural numbers, despite
being infinite, turns out to have strictly fewer elements than the set of real
numbers. (The technique we used here is called diagonalization.)

6. The Continuum Hypothesis

As it turns out, this result is related to the power set operation, which we talked
about in the first class. If we start with an infinite set A, then the power set of

A, pow(A), is also an infinite set, which is strictly “bigger” than A!

This turns out to be true of IR: its cardinality is equal to the cardinality of the
power set of the natural numbers. But is there an infinite set whose cardinality
is strictly between these two? This is known as the continuum hypothesis.
The answer is: we don’t—and can’t—know:. It can be shown the truth or falsity
of this statement is independent of the formal system of set theory, which

we considered in the first class.

PHIL 210/510: Formal Methods
Lecture 4: Proof; Bits and Pieces

Yale, Spring 2025
Dr. Calum McNamara

1. How to Prove Things

In this class, you’ll sometimes be asked to prove a certain statement. For ex-
ample, a typical problem set question might look like:

Problem. Show that conditionalization preserves conditional probabilities.
That is, show: p4(B | A) = p(B | A).

(Don’t worry if you don’t understand what any of that means yet—you will
soon.) In order to do this, it’s worth having a few techniques in your back
pocket. So that’s what I'll introduce you to now.

1.1 Unpacking Definitions

One of the first things you’ll want to do in a proof is unpack the definitions
you’ve been given. For example, consider the problem above. It asks you to
show that two conditional probabilities are equal: p4(B | A) and p(B | A).
Given this, it’s often a good idea to start by unpacking the relevant definition—
in this case, the definition of conditional probability: p(B | A) = p(A A
B)/p(A). (Again, don’t worry if you don’t know what this means. You will
soon!)

Let’s try an example—one that you will know something about already:
Challenge Question. Show that, if A C B, then A € Pow(B).
1.2. Proving ‘if’ Statements

You will sometimes be asked to prove statements that make use of the word

‘if’—statements like this:
Challenge Question. Show that, if A C Band B C C,then A C C.

When you’re asked to prove statements like this, the first thing you’ll want
to do is suppose the ‘if’ part. You can then prove the part after ‘if’, given this

supposition.

1.3. Proving ‘if and only if’ Statements

You will sometimes be asked to prove statements that involve the words ‘if
and only if’ (or ‘iff’ for short). Good news. This really just involves proving
two ‘if” statements. To illustrate, supposer we want to prove the following:

Challenge Question. Let A and B be sets. Then, prove that A C Biff AN
B=A.

Here, you start by supposing that A C B, and then show that AN B = A.
You then suppose that AN B = A, and then show that A C B.

1.4. Proof by Contradiction
Suppose we want to show that the following is true:
Challenge Question. Show that: AN (B\ A) = @.

One way you can do this is to suppose the inequality does not hold, and then
show that, given this supposition, we can reason our way to a contradiction.

1.5. Proof by Induction

Remember the Principle of Induction, from our discussion of the Peano axioms.
It said that: if P is a property of numbers, P(0) is true, and if P(k) is true, then
this implies that P(k + 1) is true (for some arbitrary k), then P(n) is true for
all n.

This technique—proof by induction—can be applied to more than just numbers.
For example, it often works when we want to prove things about a logical
language:

Challenge Question. Prove that every well-formed formula of propositional
logic has an even number of parentheses.

Here, we start by showing that the “atomic formulas” have an even number of
parentheses (namely, 0). We then suppose arbitrary formulas ¢ and ¢ have an
even number of parentheses. Next, we prove that every formula we can build
from these formulas, using the formation rules, also has an even number of
parentheses. Induction then lets us conclude that every well-formed formula

has an even number of parentheses.

(Note: If you need to use induction to solve a homework problem, I'll usually

mention this in a hint.)
2. Use and Mention

Let’s now take a look at something completely different. Remember how,
when I introduced propositional logic, I said that formulas like p, p A g, etc.,
were formulas in our formal language. In contrast, when I wanted to speak in
general, about statements of the formal language, I used Greek letters, like ¢

and ¢.

This distinction—between using words/sentences and merely speaking about,
or “mentioning”, words/sentences—is important. It’s called the use/mention
distinction. We can illustrate it, in English, with a simple example. Is the fol-
lowing sentence true or false? If it’s false, how can we make it true?

(1) net is part of a clarinet.

A harder example. Suppose I supply the following instructions to a bakery:

(2) Bake me a cake, and write God bless everyone inside a heart.

It’s hard to figure out exactly what these instructions are supposed to mean.
One ambiguity results because the phrase ‘God bless everyone’ is being used
here, when it really needs to be mentioned. How can we supply quotes to make

the sentence less confusing?
Here’s another example, involving the Pig and Whistle pub in Oxford. Suppose
I write an email to a sign-writer, who’s made the sign for the pub. I say:

(3) There needs to be more space between pig and and and and and whistle.

Again, this is extremely hard to parse. How can we make it clearer?

Thus, the general rule is: when you are using a word, you do not use quotes;

but when you are (merely) mentioning that word, talking about the word itself,

rather than the thing to which it refers, then you do use quotes.

If you think you’ve got your head around these ideas, here’s a problem to
ponder. Suppose that we used the word ‘leg’ to refer to a horse’s tail. Then,

how many legs does a horse have?
3. Quotes and Corner Quotes
Consider the following sentence from MacFarlane’s notes (p. 1):

(4) Where ¢ and ¢ are formulas, (¢ A ¢) is true in a model M iff ¢ is true
in M and ¢ is true in M.

We could try to re-write this sentence to account for the distinction between
use and mention as follows:

(5) Where ‘¢’ and ‘¢’ are formulas, ‘(¢ A @)’ is true in a model M iff ‘¢’
is true in M and ‘¢’ is true in M.

But we run into problems here since ¢ and i are meta-variables whose values
are true in the model M. In other words, the expression ‘¢’ merely denotes
the symbol ¢, which is not itself a formula of propositional logic.

Thus, we need to find a way around this problem. Quine—creative fellow that
he was—invented the method of so-called quasi-quotation, or corner-quotes, for
this purpose. Using corner quotes, we can rewrite the initial sentence like this:

(6) Where ¢ and ¢ are formulas, " (¢ A)7 is true in a model M iff ¢ is
true in M and ¢ is true in M.

We can thus think of corner-quotes as a kind of notational shortcut. In partic-
ular, " (¢ A) is a notational shortcut for: ¢ concatenated with ‘A’ concate-
nated with .

Here’s a harder example:

Challenge Question. Supply quotes and/or corner quotes to the follow-
ing sentence, to make it true: For several definite descriptions D, Winston
Churchill said We shall fight on D.

4. Types and Tokens

Consider this sentence:

(7) Aroseis arose is a rose is a rose.

How many words does this sentence contain? On the one hand, it seems sen-
sible to say that it contains three words, namely ‘A’, ‘rose’, and ‘is’. But on the
other hand, it seems equally sensible to say that it contains eleven words.

In fact, both answers are conceivably correct, because the question I asked
was ambiguous. To disambiguate it, we can say: the sentence contains three
word types, but eleven word tokens.

Challenge Question.
5. Analyticity, Necessity, A Prioricity

Statements (in English) can be true for different reasons. Moreover, there are
different ways in which we can discover that a given statement is true, or false.
For example, compare the following two statements:

8) 242=4

(9) It’s Sunny outside.

Both of these statements are true (at least at the time of writing). But the first
seems to have a special property that the second lacks. Likewise, consider:

(10) Ithink, therefore I am.

(11) All bachelors are unmarried.

Arguably, these sentences also have special characters, which the second sen-

tence, above, lacks. With this in mind, let us introduce some distinctions.

The Analytic/Synthetic Distinction. A sentence is said to be analytically
true (or just analytic) if it’s true purely in virtue of the meanings of the words.

For example:

(12) Vixens are female foxes.

It’s said to be synthetic otherwise.

The A Priori/A Posteriori Distinction. A sentence is said to be true a priori
if it’s possible to discern it’s truth “prior to experience”. For example, you don’t
have to go out into the world, conduct experiments, etc., to see that a certain
sentence is a priori true. To illustrate, the first sentence here is often thought
to be true a priori, while the second isn’t—as we say, it’s true a posteriori.

(13) 1#0.

(14) Nothing travels faster than light.

The Necessary/Contingent Distinction. Finally, a sentence is said to be
necessarily true if (roughly) it couldn’t possibly be false." It’s merely con-
tingently true otherwise. For example, the first sentence below is necessarily
true, the second merely contingently true:

(15) 1#0.

(16) It’s Sunny outside.

Challenge Question. Go through the four sentences that I started this section
with. Which (if any) are true necessarily? A priori? Which are analytic?

1. This definition is a bit circular. We’ll clarify things more, when we get to the next
section—and, more importantly, when we get to modal logic.

Challenge Question. Historically, it was often thought that analytic = a pri-
ori = necessary. (That’s one reason there’s some overlap in the examples I
gave above.) Nowadays, that view is widely rejected.? Can you think of any
examples of a sentence which is, e.g., necessary, but a posteriori? How about
contingent, but a priori? What about synthetic a priori?

Finally, it’s probably worth knowing the following general facts about these

distinctions:

The analytic/synthetic distinction is usually taken to be a semantic dis-

tinction.

« The a priori/a posteriori distinction is usually taken to be an epistemic

distinction.

« The necessary/contingent distinction is usually taken to be a metaphysi-

cal distinction.
6. Possible Worlds

Let’s go back to the rough definition I gave of necessary truth. I said: a truth is
necessary if it couldn’t possibly have been false. One issue with this definition,
however, is that appeals to the notion of possibility. And you might think a
sentence’s being possibly true is itself a notion that needs to be defined. How,
then, are we to do this?

A common definition of ‘necessary truth’ in philosophy is truth in all possible
worlds. (This is still rough; we’ll make it more precise in our unit on modal
logic.)

The notion of a possible world is arguably one of the most important notions
to pop up in philosophy—especially in the last hundred-or-so years. We will
use this notion in all of the units to come. But what is a possible world?

Often, in philosophical theorizing, we take the notion of a possible world as
an unanalyzed primitive (the way that mathematicians take the notion of a set

2. Somewhat relatedly, many philosophers now reject the analytic/synthetic distinc-
tion altogether. Can you think of examples which seem to cast the legitimacy of that
distinction into doubt?

as an unanalyzed primitive). The best we can do is give it an informal gloss: a
possible world is a completely specific way the world could be. It’s something
that “decides” the truth of every question you can ask. For example, you might
wonder ‘Is it raining?’ Then, at any given possible world, the answer to that
question will be either ‘Yes’ or ‘No’. Likewise: ‘Can things travel faster than
light?” There may be possible worlds at which the answer is “Yes’. But the
important point is just that, at any given possible world, the question has an

answer.

Later on, we’ll see that we can analyze various things in terms of possible
worlds—e.g., propositions. One interesting thing, however, is that we could
(alternatively) think of possible worlds themselves as propositions (and leave
‘proposition’ as an unanalyzed primitive). On this view: a possible world is a
proposition w such that, for any other proposition p, w either entails p or p’s
negation. This view is popular among higher-order logicians.

One last thing: Are possible worlds real? Almost everyone agrees, the answer
is ‘No’. They’re usual fictions we invent for philosophical theorizing, the same
way, e.g., the frictionless plain is a fiction useful for theorizing.

The great philosopher—the greatest, in my view—David Lewis, however,
thought they are real. They are so useful in theorizing, he argued, that we
should admit their existence. The argument is similar to the way we admit
the existence of numbers—or better, sets—into our ontology, because num-
bers/sets are so useful in our theorizing. Mathematicians acknowledge the ex-
istence of sets, for example, because, in doing so, we can give a foundation for
almost all other mathematical theorizing. The same thing goes, Lewis thought,

for possible worlds.

This, however, strikes many as absurd. It’s silly (they say) to think there’s a real
world where there’s a talking donkey. Or two dragons fight for five minutes,
and the world ceases to exist. And so on.

Lewis was well aware of these objections. But he thought this line of argument
wasn’t enough. As he put it, the most common reaction to his arguments for
modal realism—the view that possible worlds are real—is the incredulous
stare. But as he famously quipped: “I cannot refute an incredulous stare”.

PHIL 210/510: Formal Methods

Lecture 5: Formal Semantics I

Yale, Spring 2025
Dr. Calum McNamara

1. Frege on Compositionality

Thanks to our first two weeks spent on mathematical background, you’re now
familiar with the notion of a function. Indeed, you’ve been familiar with the
notion of a function, as it applies to numbers, for some time. We all know, for
example, how to compute the value of 72, given our knowledge of what 7 is,

2

what the square function, f(x) = x4, is, etc.

The great German mathematician, logician, and philosopher Gottlob Frege had
the brilliant idea that meaning in natural language works in a similar way to
the function f(x) = x2. In particular, he thought that we can compute the
meaning of whole sentences, from the meanings of their parts, in a fashion
similar to the way we compute 72 = 49.!

Frege’s Conjecture. Semantic composition is functional application.

To illustrate this, consider a simple example: the sentence Fred smokes.?
According to Frege, the denotation of a proper name, like Fred is just the
person Fred. Similarly, the denotation of a declarative sentence, like Fred
smokes, is just it’s truth-value—i.e., either 0 and 1. But what about the predi-

cate/intransitive verb smokes?

Fred smokes
Denotation: either 0 or 1

T

Fred smokes

Denotation: Fred Denotation: ?

1. In fact, Frege’s idea leads to a brilliant, alternative foundation for mathematics
known as type theory. Type theory is having a rivival at the moment. It plays a part
in much recent work in philosophical logic—especially so-called higher-order logic—
and metaphysics—especially so-called higher-order metaphysics. If you’re curious, you
should do some googling.

2. Following Heim and Kratzer, I'll often use boldface text, when I'm mentioning
a word/phrase/sentence, rather than using it, instead of using quotes. Note that this
means by use of boldface does double duty!

Frege’s idea was that we should think of the denotation of a predicate like
smokes as a function—namely, the function which takes in “entities” (like
Fred), and maps them to truth values. Thus we have the following:*

+ [Fred] = Fred
+ [Fred smokes] = 1 iff Fred smokes

« [smokes] = a function that takes in entities, and maps them to 1 iff the

entity in question smokes.

Applying Frege’s idea, with smokes as the function and Fred as the entity, we
thus get:

[smokes]([Fred]) = 1 if Fred smokes, 0 otherwise.

In this example, the phrase ‘= 1 if Fred smokes, 0 otherwise’ gives the truth-
conditions for the sentence ‘Fred smokes’. In turn, the truth-conditions tell
us what the world would have to be like, in order for a given sentence to be
true.

2. A Digression on Category Mistakes

Consider the following example, which looks a lot like the one we just encoun-
tered:

[smokes]([two]) = 1 if two smokes, 0 otherwise.

Is this function defined or not? If the function is defined, then it should of
course output O (false), since the number two can’t smoke.

But then again, you might think that the function should simply “crash” here,
because the number two isn’t something to which the verb smokes can apply
in the first place.

3. The double brackets here, ‘[, /', also denote a function—the denotation function.
It maps words/phrases/sentences to their semantic values.

This issue divides semanticists (and philosophers!): some say that the function
should output the value 0; others say that it shouldn’t output a value at all.
We’re going to be simple-minded here, however, and assume that functions
like the one above need not “crash” when they’re given funny arguments.

3. Semantic Types

We have already referred (implicitly) to numerous semantic types. For exam-
ple, we have spoken of the type of entities (like Fred); and we have discussed
the fact that these entities are the inputs to functions (predicates). Further-
more, we have discussed the type of truth-values, which are just the numbers
Oand 1.

In this section, we are going to specify recursive rules for determining the
semantic type of any linguistic object. First, let’s denote the domains of the

semantic types we already have at hand as follows:
(i) D is the domain of entities,
(ii) Dy is the domain of truth-values, i.e., the set {0,1},

(iii) Dy is the domain of functions that have entities as their arguments and

truth-values as their values.

This is a good start. But we need more semantic types than this. To illustrate
why. Consider the following sentence: Jack loves Jill, alongside the corre-
sponding syntactic tree: Now, it seems clear that loves Jill should be treated

Jack loves Jill
e et

as a function of type e, t. But it’s also clear that we can break loves Jill down
even further. Doing so results in the tree on the following page. From there,
it’s clear that Jill should have type e. But what about the transitive verb loves?
Well, we want loves to be something that takes in an entity (in this case Jill),

and outputs a function of type ¢, t. Thus, we can conclude that loves has se-

mantic type e, (e,), and that the tree may be completed as in the second tree

on the next page.

t
Jack loves Jill
e et

N
loves Jill

? e

Jack loves Jill
e e, t

/\
loves Jill

e {e,t)y e

Examples like this one motivate the idea that we’re going to need many more
semantic types than we currently have. Thus, we’re going to introduce an
infinite family of semantic types, according to a recursive procedure—namely,
the following:

(1) eis a semantic type,
(2) tis a semantic type,

(3) If ¢ is a semantic type and is a semantic type, then so is (¢, P) (i.e., the
function that takes in things of type ¢ and outputs things of type).

(Note that we’ll often drop the angle brackets, writing things like ‘e, #’ instead
of (e, t)’, provided doing so doesn’t introduce ambiguity.)

Of course, it’s going to turn out that not every semantic type in this infinite

hierarchy is one that we’ll find commonly in natural language. Nevertheless,

it’s good to have them all at our disposal—we’re going to need more of them
than you’d think.

4. Syntactic Trees, Briefly

Above we've been “breaking down’ sentences (like Jack loves Jill) into their
constituent parts. There are better and worse ways to do this. For example,
which of the following is the correct syntactic tree for the sentence John put
the book on the table? Intuitively, it’s the second. But we need to be able to
say why, exactly, the second tree is the correct one.

John

put the

John

put on
the book the table

Linguists have developed a battery of tests (of which we’ll look at three) for
determining syntactic constituents of sentences. These tests are not, unfor-
tunately, water-tight. But they do function as relatively good heuristics for

determining syntactic constituents.

The first such test is called the short answers test. The idea is that, if some
piece of a sentence can function as a short answer to a question, then it’s likely
to be a syntactic constituent. Here are a few examples.

« Question: What did John put on the table? Answer: The book.

+ Question: Where did John put the book? Answer: On the table.

This suggests that the book and on the table are syntactic constituents of
John put the book on the table.

The second test is called the pro-form substitution test. Pro-form is the gen-
eral category of words including pronouns and proverbs. For example, along-
side He, she, etc., we have words like did. Altogether, these words form a

category called the pro-form category.

Thus, our next test is: if some piece of a sentence can be replaced with a pro-

form, then it is likely to be a syntactic constituent of the sentence. To illustrate:
+ John put the book there (with there replacing on the table).

« Who put the book on the table? John did (with did replacing put the
book on the table).

Our final test is called the movement test. This test is best explained by means
of example. So consider that we can transform John put the book on the
table into (the rather sententious) On the table John put the book. Or al-
ternatively, we can say On the table is where John put the book. The idea
behind the movement test, then, is that certain units in the sentence naturally
move together. These units are (likely to be) the syntactic constituents of the

sentence.
More on Functional Application and A-Notation

Having taken the necessary detour through the theory of syntactic structure,
let’s now take another look at a (slightly simplified version of the) tree we
considered before:

t
Jack et
e /\
loves Jill
e, (e t) e

Earlier, we said that it was possible to determine the semantic type of loves
by looking at the semantic type of Jill and the node connecting Jill to loves.
However, we also want a rule which tells us how put words like loves and Jill
together to get the semantic value of loves Jill. The rule we need is this:

Functional Application (FA). If « is a branching node, {3, v} is the
set of its daughters, and [f] is a function whose domain contains [],
then:

[ad = [BICIYD)-

Here, it’s important to keep in mind the following distinction:

(i) The semantic value of a word is just the thing it denotes. For example,
[Jill] = Jill (the person).

(ii) The semantic type of a word is the domain of things to which the thing de-
noted belongs. Thus, the semantic type of Jill is D, the domain of entities,
since the person, Jill, is an entity (and not, e.g., a function or a truth-value).

Thus, to compute the semantic value of the node loves Jill in the tree above,
we use functional application. That is, if loves Jill = a, then we have:

[loves Jill] = [loves]([Jill]).

And as we know, this is going to be a function f, which takes in entities,
and returns more functions. A more traditional notation denoting this func-
tion would be extremely cumbersome, and is worse than useless when the
function has infinitely many arguments and/or values. Thus, for this reason,
semanticists often use a somewhat unusual notation—A-notation.

Consider, for example, the way Heim and Kratzer (1998) define the successor

function using the following notation:

f(n)=[An:neN.n+1].

This reads: “An is the function that maps every natural number # to its succes-
sor, 1 + 17 More generally, when we see a function rendered in this so-called
A-notation, we read it as follows. Consider:

Aa:¢. .

In words: A is the function that maps every « such that « is in the domain
specified by ¢ to its value, . Thus, « is the argument variable, ¢ is the
domain condition, and ¢ is the value description.

When it is obvious, we suppress the domain condition in the A-notion. For ex-
ample, if it is clear from context that we’re talking about the natural numbers,
then we can define the successor function as:

[An.n+1].
This reads: “the function that maps every natural number 7 to its successor,

n+17

With the Functional Application rule and A-notation clearly in mind, then,
here’s a challenge question to end with:

Challenge Question. Which of the following is the correct denotation of
loves?

(1) loves] = [Ax . [Ay .y loves x]],

(2) [loves] = [Ax . [Ay . x loves y]].

PHIL 210/510: Formal Methods

Lecture 6: Formal Semantics I

Yale, Spring 2025
Dr. Calum McNamara

1. Unfinished Business

Last time, we talked about simple sentences like Fred smokes. Recall that:
+ [Fred] = Fred

+ [smokes] = a function that takes in entities, and returns the value 1 iff
the entity smokes.

« [smokes]([Fred]) = 1 iff Fred smokes.

What we’ve done in the last line is compute the truth-conditions for the
sentence Fred smokes. (Note that functions of this form—which output 1 if
an entity has some property, and 0 if it doesn’t have the property—are called
characteristic functions.)

We also ended with some remarks on syntactic structure—we looked at a few
tests, which help us to identify the “syntactic constituents” of sentences. Hav-

ing done that, we then “broke down” the sentence Jack loves Jill:

Jack loves Jill
?

Jack loves Jill
? ?

N
loves Jill

? ?

Challenge Question. As a warm-up, let’s begin today by replacing the
question-marks in the tree structure above with semantic types for the vari-

ous expressions.’

1. Remember: my use of boldface text in these notes is ambiguous for this section of
the course. I use it—following Heim and Kratzer—both to distinguish between use and
mention, but also when I'm (re-)introducing technical terms, as a kind of emphasis.

The process we just went through to answer this question illustrates the gen-
eral rule we use for “combining” basic parts of sentences, to get meanings for

more complex parts. (Our first example did so as well.) The rule I have in mind:

Functional Application (FA). If « is a branching node, {8, v} is the
set of its daughters, and [f] is a function whose domain contains [],
then:

[od = [BI(IYD)-

Remember that [-] is the interpretation function.’ It maps word tokens to
their denotations. Here, it’s important to keep in mind the following distinc-
tion:

(i) The semantic value of a word is just the thing it denotes. For example,
[Jill] = Jill (the person).

(ii) The semantic type of a word, in contrast, is the domain of things to
which the thing denoted belongs. Thus, the semantic type of Jill is e—viz.,
entities—since the person, Jill, is an entity (and not, e.g., a function or a
truth-value).

To compute the semantic value of the node loves Jill in the tree above, we use
the functional application rule. That is, if loves Jill = «, then we have:

[loves Jill] = [loves] ([Jill]).

Moreover, we know, this is going to be a function f, which takes in entities,
and returns another function.

Semanticists often use a special notation when it comes denoting functions.
It derives from the mathematician Alonzo Church, and is sometimes called
A-notation.?

2. This function sometimes goes by other names—like ‘denotation function’. Apolo-
gies in advance if I accidentally switch my terminology.
3. As a bit of history, Church is famous for, among other things, the Church-Turing

Consider, for example, the way Heim and Kratzer (1998) define the successor
function using the following notation: f(n) = [An : n € IN . n + 1]. This
reads: “An is the function that maps every natural number 7 to its successor,
n 4 17 More generally, when we see a function rendered in this so-called A-
notation, we read it as follows. Consider: [Aw : ¢ . ¢]. In words: A is the
function that maps every a such that « is in the domain specified by ¢ to its
value, 1. Thus, « is the argument variable, ¢ is the domain condition, and
1 is the value description.

When it’s obvious, we suppress the domain condition in the A-notion. For
example, if it’s clear from context that we’re talking about the natural numbers,
then we can define the successor function as: [An . n + 1]. This reads: “the

function that maps every natural number 7 to its successor, n + 1”

With the Functional Application rule and A-notation clearly in mind, then,
here’s a challenge question:

Challenge Question. Which of the following is the correct denotation of
loves?

(1) [loves] = [Ax . [Ay .y loves x]],
(2) [loves] = [Ax . [Ay . x loves y]].

Having done that, can you compute the semantic value of the whole sentence
Jack loves Jill from its most basic parts?

2. The Semantic Value of ‘is’

Roughly speaking, a copular sentence is an is sentence—a sentence contain-
ing the word is. For our purposes, these sentences come in two varieties: (i)

identity sentences, and (ii) predicational sentences.

First, a copular sentence involving identity is one like ‘Rhian is my sister’.
Second, a copular sentence involving predication is one like ‘My sister is nice’.

thesis in the foundations of computer science. He also invented the (formal) notion of
the computer, at the same time as Alan Turing. Later, he became Alan Turing’s doctoral
advisor, at Princeton.

How are we to determine whether a given copular sentence is an identity
sentence or a predicational sentence? Often, you’ll simply able to recognize
this, a priori. However, here are some tests to help:

« The Quantifier Test. Check whether the sentence has quantifiers; if it
does, then there’s a good chance we’re looking at a predicational sentence.
(Example: ‘nothing is expensive’.)

« The Small Clauses Test. Predicational sentences can be naturally embed-
ded into clauses under ‘consider’. (Example: ‘T consider my sister nice’.)

As a rule of thumb, the identity copula functions something like the equals
sign, ‘=". By contrast, the copula of predication is used to say that some object
has a certain property.

However, why are we even talking about copular sentences and the associ-
ated tests at all? The reason is that, depending on whether ‘is’ is functioning
as the ‘is’ of identity or ‘is’ of predication in a given sentence, it will have dif-
ferent semantic values. To illustrate this, consider the sentence Clark Kent
is Superman. This is clearly the is of identity. Thus, the tree for the sentence,
together with its semantic types, looks like this.

Clark Kent is Superman

t
Clark Kent is Superman
e et
is Superman
e, (e t) e

Plainly, since the type of Superman is e, the type of is in this case must be

e, (e, t). Furthermore, notice that the semantic value of is Superman is:

lis Superman] = [Ay . y is Superman].

So it makes sense to say that the semantic value of is, in the identity case, is:

lis] = [Ax. [Ay .y = x]].

By contrast, consider Fido is ginger, where Fido is a dog. Here, the is is the
predicational is. Rather surprisingly, semanticists generally agree that, in this
case, the semantic value of is is null. That is, it contributes nothing to the
meaning of the sentence Fido is ginger; we could just as well have written
Fido ginger, and ended up with a sentence that is (in a formal sense) equally
meaningful:

Fido is ginger
t

Fi((>\

is ginger
%] et

e

Again, maybe this seems a little surprising to you. But take another look at
the Small Clauses test. Does it make more sense now? Similarly, take a look
at the semantic type of ginger. If is in this case wasn’t null, how would we
have to change ginger?

5. Quantifiers

Let us now consider quantifiers. What, for example, is the semantic type of
someone? Consider the tree on the next page.

Someone smokes
t
Someone smokes
? et

Plainly, since smokes is of type ¢, t, we want someone to be a word which
takes in words of the same type as smokes, and outputs a truth-value. Hence,
someone should be of type (e, t), t. Its semantic value is:

[someone] = [Af . Jx such that f(x) = 1].

More broadly, we can say that the semantic value of Someone smokes is 1
iff there exists x such that x smokes.

The methodology we’ve employed here allows us to compute the seman-
tic type of quantifiers more generally. For instance, consider Some student
smokes, and its associated tree:

Some student smokes
t

T

(e, t),t smokes

/\ et

Some student
? et

Since we want Some student to be type (e, t),t, and we know that student
is of type ¢, , it follows that some is of type (e, t), {{e,t), t). Furthermore, the

semantic value of some is:
[some] = [Af .[Ag . xf(x) = g(x) =1]].

Note that all the other quantifier phrases with which you’re familiar follow
the same pattern. That is, their types are (e, t), {(e, t),). It's a good exercise
to show this using other phrases, like All students smoke. (Problem set any-
one?)

6. Predicate Modification

Now consider the sentence Fido is a ginger dog. We know that ginger is of
type ¢, t and so is dog. So how do we combine ginger and dog in such a way
as to yield something of type e, f, which we know we need higher up in the
tree?

One answer is: we can introduce a new rule called predicate modification.
This rule allows us to simply intersect adjectives like black and dog to give
an object of semantic type e, ¢, thus avoiding any potential clash. The rule is
formalized as follows:

Predicate Modification (PM). If « is a branching node, {5, v} is the
set of its daughters, and moreover [B] € D,; and [y] € D,;, then

[o] = [Ax . [B] =1, [7v] = 1).
7. Non-intersective Adjectives

But what about the sentence Fido is a green dog. Or alternatively, consider
This is a fake diamond. In these cases, predicate modification would lead to
incorrect results. Why?

The answer is that predicate modification applies only to intersective adjec-
tives. However, fake and diamond, for example, are non-intersective: the set
of objects to which the word fake legitimately applies, and the set of objects
denoted by the word diamond, do not overlap; they have empty intersection.
Similarly the set of objects to which dog applies, and the set of objects to which
green applies, have empty intersection. So predicate modification cannot be

used in these cases.
8. Definite Descriptions

We have one last topic to cover before we move on to consider semantics from
a slightly different angle (in Wednesday’s class). This is: definite descriptions.

Consider the sentence The student smokes.

t

T

(e, t),t smokes

N et

The student
? et

Again, smokes has type e, t: it’s a function that takes in something of type
e and returns a truth-value. Likewise, student is of type ¢, f. But what about
the?

The tree above suggests that the has to be of type (e, t), ({e, t)t). This is the
same type as that of quantifiers, like some, which we considered a few sec-

tions back. Is the denotation of the also the following function?

[the] = [Af [Ag . 3xf(x) = g(x) = 1]].

(As areminder, that’s the same function as that denoted by some.) Intuitively
it shouldn’t be. Some student is true is one student smokes; but it’s also true
if five students smoke; or ten students smoke. But the thing picked out by the
seems more specific. We take its semantic value to be:

[the] = [Af [Ag . Ixf(x) = g(x) = 1]].

Here, 3!x means ‘there is exactly one thing, x’.* So, uniqueness is an important

feature of definite descriptions.

4. If you took first-order logic with me, you’ll recall that we never introduced the
symbol (3!x)Fx for “There exists exactly one x such that Fx’. But we can think of
(3!x)Fx as a shorthand for (3x)Fx A (Vy)(Fy Dy = x.

PHIL 210/510: Formal Methods
Lecture 7: Formal Semantics III

Yale, Spring 2025
Dr. Calum McNamara

1. Deriving Truth-conditions

Today, we're going to start by deriving truth conditions for various sen-
tences. This is something we did in class last time. In particular, we derived the
truth conditions for the sentence Fred smokes, by starting with the semantic
values of the words Fred and smokes:

+ [Fred] = Fred
« [smokes] = [Ax.x smokes].

(Remember: we read ‘[Ax.x smokes]|’ as ‘the function that takes in x (where x
is an entity) and maps it to the value 1 iff x smokes’. Thus, the ‘...and maps it
to 1..] is implicit. As Heim and Kratzer say (1998, p. 36), we're adopting this
reading as a kind of convention. We could write it out more explicitly in in our
A-notation. But we won’t.)

Now, to derive the truth conditions for Fred smokes, we use our rule of
functional application (FA), putting Fred in as an argument to the function

[smokes]:

[Fred smokes] = [smokes]([Fred])
= [Ax.x smokes](Fred)
= 1 iff Fred smokes.

Let’s now use the same methodology to derive the truth-conditions for more
complicated sentences. (When you do this, it’s a good idea to start by writing
down all the semantic values for the words/phrases you’re starting with, if
you know them—just as we did in the case of Fred smokes. If you don’t know
them, we’ll have to start by figuring them out. And to do that, we’ll have to
start by drawing out trees, and labelling semantic types.)

Challenge Question 1. Derive the truth conditions for the sentence Jack
loves Jill.

Challenge Question 2. Derive the truth conditions for the sentence Some-
one smokes. (Note: to derive these truth conditions, you'll first have to figure
out the semantic value of Someone—which is non-trivial. To do so, we’ll start

by constructing a syntactic tree.)
Challenge Question 3. Derive the truth conditions for The student smokes.
2. A Problem for Extensional Semantics

Let’s try one more Challenge Problem, which will help us transition to today’s

main topic.

Challenge Question 4. Derive the truth conditions for Lois believes Clark
Kent is Superman.

We'll do this last question together. First, then, let’s draw out (part of) the

relevant tree diagram:

Lois believes Clark Kent is Superman
t

Lois Dbelieves Clark Kent is Superman
e et

T

believes Clark Kent is Superman
t, (e, t) t

Thus, given this tree diagram, you might think that the semantic value for be-
lieves should be something of type t, (e, t)—that is, a function which takes in
a truth value (either O or 1), and maps it to another function. But this immedi-
ately raises a problem. To see it, consider these two sentences:

+ Clark Kent is Superman

« Bruce Wayne is Batman

Both of these sentences (let’s pretend) are true true, and thus we have:
[Clark Kent is Superman] = [Bruce Wayne is Batman] = 1.

And so it seems like, when we’re computing the truth conditions for Lois
believes Clark Kent is Superman and Lois believes Bruce Wayne is Bat-
man, our current theory will say that these truth conditions are the same.
In other words, Lois believes Clark Kent is Superman is true iff Lois be-
lieves Bruce Wayne is Batman is. After all, in both cases, we’re handing the

function believes the same truth-value—namely, 1!

But this is plainly nonsense. Clearly, Lois could believe one of these sentences,
without believing the other. In fact, the problem is even more rampant than
you might currently appreciate. Our current semantic theory says that, for any
true sentences ¢ and 1, Lois believes one just in case she believes the other.

Thus, our current semantic theory clearly fails.
3. Towards a Solution: Intensions

Our current semantic theory is an extensional semantics. That is, it says the
semantic values of words, phrases, and sentences are just their extensions—
that is, the things those words/phrases/sentences denote at the actual world.
In the case of sentences, these extensions are just truth values. But as we
just saw, this extensional view of sentences leads to problems when it comes
to words like believes.

Thus, to rectify this, we’re going to introduce the notion of an intension. This
is a tricky notion to pin down. For example, Heim and Kratzer (1998, p. 302)
give the rather unhelpful definition of an intension as “a function from indices
to appropriate extensions”, where the “indices” here can be people, times, and

what have you.

As Heim and Kratzer also say, however, we can simplify matters by thinking of
intensions just as functions from possible worlds to extensions. What exactly
is meant by this will become clear as we go along.

4. Enriching our Hierarchy of Semantic Types

To get a better feel for what we mean by intensions, let’s start as follows.
First, let W be the set of all possible worlds.

Now, recall the set D, which consists of all the “entities” that obtain at the
actual world. (When we introduced D, initially, we left the ‘at the actual world
clause’ implicit.) Clearly, different entities exist at different worlds—Superman
doesn’t exist at our world, for example; but he exists at other possible worlds.
Thus, for each possible world, w, there’s a corresponding set of entities—each
world has it’s own D,.

With this in mind, then, let D now be the union of all the sets D,.* Thus, D is
the set of all individuals, at all possible worlds. And we’ll now think of e-type
expressions, as those that denote entities in the set D.

Given this new notion of the set of entities, we can introduce a hierarchy of

new sets:
« D is the set of all individuals (at all possible worlds),
« Dy = {0,1} is still the set of truth values,

+ Dy ¢ is the set of all functions, which take in elements of the set D, and
return objects in Dr.

+ Ds ¢ is the set of all functions from W, the set of worlds, to elements of the
set D¢ (whatveer that may be).

Given these sets, we can now enrich our original hierarchy of semantic types:
- eisatype,
» tisatype,
- if o and T are types, then so is (0, T),

. if T is a type, then so is (s, T).

1. In formal notation, this would be written: ‘D = (J, D,’.

Thus, for example, objects of type (s,t) are functions which take possible
worlds, and maps them to truth-values. This type, as we’ll see, is really go-
ing to be the key to getting the right results when it comes to sentences like
Lois believes Clark Kent is Superman

(Also, for what it’s worth, I'm not sure why the notation s is used in the case

of intensions. It’s traditional—but a little confusing, in my view.)
5. Characteristic Functions and Propositions

Think again about the type (s, t)—the type of functions which map possible
worlds to truth-values. Clearly, such a function is going to take each possible
world, w, map it either to 0 or 1.

Functions like this are called characteristic functions. More generally: for
any given set, A, its characteristic function is the function which takes each
X € A and maps it to 1, and for any x ¢ A, maps it to 0. For example, the
characteristic function of the set [E (of even natural numbers) is the function
defined, for every n € IN, by:

1 ifnifeven
f(n) =

0 otherwise.

Every set has a corresponding characteristic function of this kind. And as it
turns out, they’re very, very useful.

Think, for instance, about the notion of a proposition. This is something we
talked about early in the class. One nice thing about our present set-up is that
we’re now able to give a very precise characterization of this notion. Here, for

instance, is how Robert Stalnaker spells this out:

The explication of proposition given in formal semantics is based on a
very homely intuition: when a statement is made, two things go into
determining whether it is true or false. First, what did the statement

say...? Second, what is the world like: does what was said correspond

to it? What, we may ask, must a proposition be in order that this simple
account be correct? It must be a rule, or a function, taking us from the
way the world is into a truth value. But since... we may wish to con-
sider the statement relative to hypothetical and imaginary situations,
we want a function taking not just the actual state of the world, but
various possible states of the world into truth values. Since there are
two truth values, a proposition will be a way—any way—of dividing a
set of possible states of the world into two parts: the ones that are ruled
out by the truth of the proposition, and the ones that are not.

Thus, formal semantics allows us to understand the notion of a proposition as
a characteristic function—it’s the characteristic function for the set of worlds
that are the way the proposition says. Alternatively, since every characteristic
function corresponds to a set, we may now think of a proposition as a set of

possible worlds.
6. Enriching our Semantic Theory

With the notion of an intension—qua function from worlds to extensions—
now in place, we’re going to enrich our semantic theory. Basically, the way
in which we’re going to do this is by relativizing the interpretation function
[-] to a possible world. Going forward, we make this relativization explicit by
writing “[-]%’. Think of this as saying ‘at w... blah’.

For example, here are some new semantic entries, with the relativization to
w.z

« [smokes]” = [Ax.x smokes at W]
« [loves ¥ = [Ax.[Ay.y loves x at w]]
« [Fred smokes]” = 1 iff Fred smokes at w

But what about the word believes that concerned us at the outset?

2. There’s an important exception to this in the case of names. In particular, we con-
sider names, like Fred, to pick out the same entities at all possible worlds. Thus:
«+ [Fred]” = Fred.
We don’t need to add ‘at w’ to names.

7. Returning to the Example To answer this question, let’s start by taking

another look at the tree we looked at before:

Lois believes Clark Kent is Superman
t

T

Lois believes Clark Kent is Superman

e et

T

believes Clark Kent is Superman
? ?

The semantic types listed all seem fine. But what about the types of believes
and Clark Kent is Superman? Well, we know the former has to be a function
outputting things of type e, t as its values. And we know that, in this context,
the latter can’t merely be something of type ¢, since, if that were the case, we’d

run into the same problems we had before. So what is it?

The answer, of course, is that, in this context, Clark Kent is Superman must
be of type s, t and thus believes must have type (s, t), (e, t). In other words,
believes is a function which takes in, not truth values, but propositions, as its

arguments. So the tree becomes the following:

Lois believes Clark Kent is Superman
t

Lois believes Clark Kent is Superman

e et
believes Clark Kent is Superman
(s, 1), (e, t) s, t

Given this new tree, we can now give a (rough-and-ready) semantic entry for

believes:?

« [believes]” = [Ap € D<S’t>.[/\x € D. at all the worlds w' compatible
with what x believes at w, p(w') = 1]].

So, the semantic value of believes (at a possible world w) is a function which
takes in a proposition, and maps this to another function, which takes in an
entity x—the believer—and outputs the value 1 just in case x believes that

proposition.

We’re now almost in a position where we can compute the truth conditions for
(sentences like) Lois believes Clark Kent is Superman. But we need to in-
troduce a new compositional rule, analogous to our original rule of Functional
Application, to do this:

Intensional Functional Application (IFA). If « is a branching node
and B,y are its daughters, then, for any possible world w, if [B]*
is a function whose domain contains Aw’.([y]%), then [a]® =

[B1° (A’ ([7]™))-

Here, then, is (part of) the derivation:

[believes Clark Kent is Superman]®
= [believes]” (Aw'.[Clark Kent is Superman]]w/)
= [believes]” (Aw'.Clark Kent is Superman in w’)

[Lois believes Clark Kent is Superman]®
= [believes Clark Kent is Superman]”)(Lois)
= 1 iff Lois believes Clark Kent is Superman at w

3. This is still a little rough. In particular, once we get to modal logic, we’ll introduce
the notion of an accessibility relation between worlds. And once we have that, we
could get rid of all the English on the right-hand side of the equality. But we don’t have
that yet, so we’ll stick with the English gloss.

Appendix. Answers to Challenge Questions

Challenge Question 1. Our basic semantic values are the following:
« [Jack] = Jack
o [Jill] = Jill
« [loves] = [Ax.[Ay.y loves x]].

Now we can use these semantic values to derive the truth conditions of Jack

loves Jill:

[loves Jill] = [Ax.[Ay.y loves x](Jill)
= [Ay.y loves Jill]
[Jack loves Jill] = [Ay.y loves Jill] (Jack)
= 1 iff Jack loves Jill

Challenge Question 2. Our next task is to derive the truth conditions for
Someone smokes. To do this, however, we first need to figure out the se-
mantic value of Someone. It’s best, here, to start with a tree:

Someone smokes
t

N

Someone smokes
?? et

From the diagram, we can see that Someone is going to be a function that
takes in things of type (e, t), and maps them to things of type ¢. Thus: the type
of Someone is ((e, t), t) What, then, is it’s semantic value? It’s the following:

[Someone] = [Af.(Ix)f(x) = 1].

Think of this as saying: The semantic value of someone is a function, which

takes in other functions, f, and maps them to the value 1, just in case there

exists an argument x, which we can plug into f, such that f returns the value

1.

Now we can derive the truth-conditions for Someone smokes:

[Someone smokes] = [Af.(3x) f(x) = 1]([smokes])
= 1 iff there exists an entity that smokes

Challenge Question 3. Now let’s try The student smokes. We’'ll use the
same methodology we used in the last question.

The student smokes
t

T

(e,t),t smokes

et
The student

”? e, t

From the diagram, it’s clear that Some is going to have type (e,), ({e, t),t).
What about it’s semantic value? I'll list all the basic semantic values below:

« [smokes] = [Ax.x smokes]
« [student] = [Ax.x is a student]
+ [some] = [Af.[Ag.(3x)f(x) = g(x) =1]]

(Why is this the right semantic value for some? Compare it that of someone!)
Now we can compute the other semantic values:

[some student] = [Af.[Ag.(Tx)f(x) = g(x) = 1]]([student])
= [Ag.(3x)x is a student and g(x) = 1]

[Some student smokes] = [Ag.(3x)f(x) = g(x) = 1]([smokes])
= 1 iff there exists a student who smokes

PHIL 210/510: Formal Methods
Lecture 8: The Semantics of Conditionals

Yale, Spring 2025
Dr. Calum McNamara

1. Intensional Semantics Completed

Last time, we met a problem for our Fregean, extensional semantic theory—
namely, it seemed to give bogus results in cases involving words like believes.
To solve this problem, we began introducing the notion of an intension. For
the purposes of this course, you can think of an intension as a function from
possible worlds to truth values. And these, we also said, can be thought of
as propositions.

Introducing intensions meant we had to enrich our type hierarchy, however:
« eisatype,
» tisatype,
« if 0 and T are types, then so is (0, T),
. if T is a type, then so is (s, T).

(Again, when it comes to the last clause, we’ll focus exclusively on the type

(/1))

Now, with the notion of an intension—qua function from worlds to
extensions—now in place, we need next to enrich our semantic theory. Ba-
sically, the way in which we’re going to do this is by relativizing the in-
terpretation function [-] to a possible world. Going forward, we make this

relativization explicit by writing ‘[-]*. Think of this as saying ‘at w... blah’.

For example, here are some new semantic entries, with the relativization to

1

w:

« [smokes]” = [Ax.x smokes at w]

1. There’s an important exception to this in the case of names. In particular, we con-
sider names, like Fred, to pick out the same entities at all possible worlds. Thus:
« [Fred]” = Fred.
We don’t need to add ‘at w’ to names.

« [loves ¥ = [Ax.[Ay.y loves x at w]]
+ [Fred smokes]” = 1 iff Fred smokes at w

But what about the word believes that concerned us at the outset? To answer
this question, let’s start by taking another look at the tree we looked at before:

Lois believes Clark Kent is Superman
t

N

Lois Dbelieves Clark Kent is Superman
e et

T

believes Clark Kent is Superman
? ?

The semantic types listed all seem fine. But what about the types of believes
and Clark Kent is Superman? Well, we know the former has to be a function
outputting things of type e, t as its values. And we know that, in this context,
the latter can’t merely be something of type ¢, since, if that were the case, we’d

run into the same problems we had before. So what is it?

The answer, of course, is that, in this context, Clark Kent is Superman must
be of type s, t and thus believes must have type (s, t), (e, t). In other words,
believes is a function which takes in, not truth values, but propositions, as its
arguments. So the tree becomes the following:

Given this new tree, we can now give a (rough-and-ready) semantic entry for
believes:*

2. 'This is still a little rough. In particular, once we get to modal logic, we’ll introduce
the notion of an accessibility relation between worlds. And once we have that, we
could get rid of all the English on the right-hand side of the equality. But we don’t have
that yet, so we’ll stick with the English gloss.

Lois believes Clark Kent is Superman
t

Lois believes Clark Kent is Superman

e et
believes Clark Kent is Superman
(s, 1), (e, 1) s, t

+ [believes]” = [Ap € Dy .[Ax € D. at all the worlds w' compatible
with what x believes at w, p(w’) = 1]].

So, the semantic value of believes (at a possible world w) is a function which
takes in a proposition, and maps this to another function, which takes in an
entity x—the believer—and outputs the value 1 just in case x believes that
proposition.

We’re now almost in a position where we can compute the truth conditions for
(sentences like) Lois believes Clark Kent is Superman. But we need to in-
troduce a new compositional rule, analogous to our original rule of Functional
Application, to do this:

Intensional Functional Application (IFA). If « is a branching node
and B, are its daughters, then, for any possible world w, if